
www.manaraa.com

Lehigh University
Lehigh Preserve

Theses and Dissertations

2017

Self Monitoring Goal Driven Autonomy Agents
Dustin Dannenhauer
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Dannenhauer, Dustin, "Self Monitoring Goal Driven Autonomy Agents" (2017). Theses and Dissertations. 2564.
http://preserve.lehigh.edu/etd/2564

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2564?utm_source=preserve.lehigh.edu%2Fetd%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

www.manaraa.com

SELF MONITORING GOAL DRIVEN AUTONOMY

AGENTS

BY

DUSTIN DANNENHAUER

Presented to the Graduate and Research Committee
of Lehigh University

in Candidacy for the Degree of
Doctor of Philosphy

in
Computer Science

Lehigh University

May, 2017

www.manaraa.com

Copyright by Dustin Dannenhauer
May 5th, 2017

ii

www.manaraa.com

Approved and recommended for acceptance as a dissertation in partial
fulfillment of the requirements for the degree of Doctor of Philosphy.

Date

Accepted Date

Committee Members:

Dr. Héctor Muñoz-Avila

Dr. Jeff Heflin

Dr. Brian D. Davison

Dr. Michael T. Cox

iii

www.manaraa.com

Acknowledgements

I have received a tremendous amount of support during my studies and though I only
mention a few individuals here, I am deeply appreciative of everyone who has helped
me along the way. I am most grateful to my advisor, Prof. Héctor Muñoz-Avila who
provided constant feedback, encouragement, and revisions. I would like to thank the
rest of my committee: Prof. Jeff Heflin, Prof. Brian D. Davison, and Dr. Michael T.
Cox. I am thankful to Dr. Cox for the opportunity to work on the MIDCA project and
with the students at Wright State University.

I would like to acknowledge Dr. David W. Aha who first introduced me to the field
of goal reasoning during my summer internship at the Naval Research Laboratory. My
experiences there provided a strong foundation leading me to produce the work in this
thesis.

I am thankful for the many undergraduate teaching assistant opportunities from
Suzanne Menzel and my first summer of research advised by Dr. David Leake, without
whom I would not have found my passion for artificial intelligence. I would also like
to acknowledge the Ronald E. McNair Post-baccalaureate Achievement Program which
funded my undergraduate research and supported me to pursue a doctoral program.

My work on inferred expectations for real-time strategy games started as a group
project with my classmates Kostas Hatalis and Will West. Their help in building the on-
tology and interface with the Starcraft: Broodwar game engine allowed me to continue
research in that direction, which lead to chapters 6 and 7 of this thesis. I also thank
Kostas for his friendship and camaraderie as a fellow doctoral student with whom I
could share my experiences.

Finally, I would like to dedicate this dissertation to my wife, Zohreh, for her under-
standing and support that kept me going through the late nights and long hours.

Dustin Dannenhauer
May 5th, 2017

iv

www.manaraa.com

Contents

I Foundation 3

1 Introduction 4

2 Background 10
2.1 Planning . 10

2.1.1 Domain Representations . 13
2.1.2 Hierarchical Task Network Planning 14

2.2 Goal Driven Autonomy . 16
2.3 Expectations . 19

3 Literature Review 21
3.1 A Classification of Plan Execution Monitoring Systems 23
3.2 Detecting Plan and Goal Failure During Execution 25

3.2.1 Using Dependency Graphs for Plan Repair 25
3.2.2 Teleo-Reactive Agents . 28
3.2.3 Case-based Planning in Wargus 30
3.2.4 Semantic Execution Monitoring on a Mobile Robot 31
3.2.5 Plan Stability vs. Plan Repair 32

3.3 Detecting and Responding to Failures During Planning 33
3.4 Detecting Future Failures . 36
3.5 Non-Plan-based Anomaly Monitoring 38

3.5.1 Classifying Other Agent’s Behavior 38
3.5.2 Detecting Knowledge Discrepancies 39

3.6 Domain-specific Monitoring . 39
3.6.1 Internal vs. External Motivations 39
3.6.2 Reasoning with Explicit Knowledge Gaps 41

3.7 Summary and Discussion . 42

v

www.manaraa.com

II Contributions 45

4 Informed Expectations from HTN Planners 46
4.1 Formalization of Informed Expectations 48
4.2 Discussion . 52

5 Informed Expectations for Sensing 54
5.1 Related Work . 55
5.2 Problem Definition . 57
5.3 GDA and Expectations . 59
5.4 Formalism . 63

6 High Level Expectations in Complex Domains 67
6.1 Ontologies for Expectations and Explanations 69

6.1.1 Example of Explanation . 71
6.2 System Details for LUiGi & LUiGi-H 75
6.3 Discussion . 77

7 A Hierarchical Model for GDA 79
7.1 LUiGi-H . 79
7.2 Example . 80
7.3 GDA in LUiGi-H . 83
7.4 Representation Formalism and Semantics of h-plans 83
7.5 Basic Overview of LUiGi-H ’s Components 87

7.5.1 Planner . 88
7.6 Discussion . 90

8 Metacognitive Expectations 92
8.1 The MIDCA Metacognitive Architecture 94
8.2 Formalizing Metacognitive Expectations 95
8.3 Reasoning with Metacognitive Expectations 97
8.4 Discussion . 102

9 Evaluation 103
9.1 Simulated Domains . 103

9.1.1 Starcraft . 104
9.1.2 Marsworld1 . 107
9.1.3 Arsonist . 108
9.1.4 Marsworld2 . 109
9.1.5 BlocksCraft . 110
9.1.6 NBeacons . 111

9.2 Results . 114

vi

www.manaraa.com

9.2.1 Expectations in Dynamic & Fully Observable Domains 114
9.2.2 Expectations in Dynamic & Partially Observable Domains . . . 118
9.2.3 Scenario Demonstrations of High Level Expectations in Starcraft 122
9.2.4 LUiGi-H vs. LUiGi in Starcraft 124
9.2.5 Metacognitive Expectations for Long Duration Missions 128

III Conclusions 130

10 Future Work 131
10.1 Towards Domain-Independent Metacognitive Expectations 133

10.1.1 Seasonal Construction Domain 133
10.1.2 Potential Domain-Independent Metacognitive Expectations . . . 136

11 Summary 139

A Ontology for Starcraft: Broodwar 144

vii

www.manaraa.com

List of Tables

1.1 Locations of contributions . 8

2.1 Set of atoms corresponding to example state S0 in Figure 9.2 14

3.1 Different Approaches to Discrepancy Detection 24
3.2 Plan and Goal-based Discrepancy Detection Techniques 26

7.1 Primitive Actions and Corresponding Expectations 82
7.2 High Level Expectations used in Attack Ground Surround 83
7.3 Plans . 89

9.1 Properties of Simulated Domains . 103
9.2 Differences in Marsworld-based domains 114

10.1 Proposed Metacognitive Expectations for Future Evaluation 138

viii

www.manaraa.com

List of Figures

2.1 Operator Definition for activate-beacon 11
2.2 Instantiated Action of activate-beacon 11
2.3 Example of a goal to activate beacons B2, B5, and B7 11
2.4 NBeacons Example Scenario: a represents the agent, integers between

0-9 represent beacons B0-B9, and ∼ represents sand pits 13
2.5 Plan to achieve goal activated(B6) from state S0 14
2.6 Method for navigate Task where destination is south of the agent 15
2.7 A basic model of a Goal Driven Autonomy agent (Molineaux et al., 2010) 18

6.1 Inconsistency Explanation Trace . 73
6.2 LUiGi-H Overview . 76

7.1 High Level Plan: AttackGroundSurround 81
7.2 AttackGroundSurround on map Volcanis 81

8.1 Schematic action-perception cycle for both object and meta-levels of
the MIDCA Cognitive Architecture (used with permission from Michael
T. Cox, see Cox et al. 2016 for more on MIDCA) 94

9.1 Screenshot of Starcraft Gameplay . 104
9.2 NBeacons Example Scenario: a represents the agent, integers between

0-9 are the locations of beacons, and ∼ represents a sand pit 112
9.3 Cumulative Execution Cost in Marsworld1 115
9.4 Cumulative Execution Cost in Arsonist 115
9.5 Plan Success vs. Obstacles (Immediate Expectations agent) in Marsworld1117
9.6 Plan Success vs. Obstacles (Immediate Expectations agent) in Arsonist 117
9.7 Sensing Cost per Failure Rate in Marsworld2 119
9.8 Sensing Cost per Failure Rate in Blockscraft 119
9.9 Sensing Cost per Failure Rate in Marsworld2 120
9.10 Sensing Cost per Failure Rate in Blockscraft 120
9.11 Screenshots of LUIGi building an initial army 123
9.12 LUiGi-H vs. LUiGi on Heartbreak Ridge 125

ix

www.manaraa.com

9.13 LUiGi-H vs. LUiGi on Challenger 126
9.14 Average Execution Cost in NBeacons 129

10.1 Result of putoutfire(B) during Winter 135
10.2 Result of putoutfire(B) during Summer 135
10.3 Original putoutfire operator definition 137
10.4 First learned operator for a single fire 137
10.5 Second learned operator for two fires 137
10.6 Third learned operator for a single block 137

x

www.manaraa.com

Abstract

The growing abundance of autonomous systems is driving the need for robust perfor-

mance. Most current systems are not fully autonomous and often fail when placed in

real environments. Via self-monitoring, agents can identify when their own, or exter-

nally given, boundaries are violated, thereby increasing their performance and relia-

bility. Specifically, self-monitoring is the identification of unexpected situations that

either (1) prohibit the agent from reaching its goal(s) or (2) result in the agent acting

outside of its boundaries. Increasingly complex and open environments warrant the use

of such robust autonomy (e.g., self-driving cars, delivery drones, and all types of future

digital and physical assistants). The techniques presented herein advance the current

state of the art in self-monitoring, demonstrating improved performance in a variety of

challenging domains.

In the aforementioned domains, there is an inability to plan for all possible situa-

tions. In many cases all aspects of a domain are not known beforehand, and, even if

they were, the cost of encoding them is high. Self-monitoring agents are able to iden-

tify and then respond to previously unexpected situations, or never-before-encountered

situations.

1

www.manaraa.com

When dealing with unknown situations, one must start with what is expected be-

havior and use that to derive unexpected behavior. The representation of expectations

will vary among domains; in a real-time strategy game like Starcraft, it could be logi-

cally inferred concepts; in a mars rover domain, it could be an accumulation of actions’

effects. Nonetheless, explicit expectations are necessary to identify the unexpected.

This thesis lays the foundation for self-monitoring in goal driven autonomy agents

in both rich and expressive domains and in partially observable domains. We introduce

multiple techniques for handling such environments. We show how inferred expecta-

tions are needed to enable high level planning in real-time strategy games. We show

how a hierarchical structure of Goal-driven Autonomy (GDA) enables agents to operate

within large state spaces. Within Hierarchical Task Network planning, we show how in-

formed expectations identify states that are likely to prevent an agent from reaching its

goals in dynamic domains. Finally, we give a model of expectations for self-monitoring

at the meta-cognitive level, and empirical results of agents equipped with and without

metacognitive expectations.

2

www.manaraa.com

Part I

Foundation

3

www.manaraa.com

Chapter 1

Introduction

There is great value in autonomy. To the degree that one has autonomy, to that degree

they are able to accomplish their pursuits without assistance. Surely as intelligent sys-

tems improve, we would like them to require less intervention from humans. A major

limitation of many artificial intelligence solutions is the ability to deal with anoma-

lous and unexpected situations. In complex environments, an agent designer cannot be

expected to foresee and impart all possible outcomes to the agent. Therefore a truly

autonomous agent would be robust to new and unexpected situations. This leads us to

the primary research question:

How can we achieve robust autonomy capable of responding competently to new and

unexpected situations?

An answer to this question will need to address the following sub-questions:

How can an agent identify a new and unexpected situation? (Identification)

How should an agent respond once it finds itself in such a situation? (Response)

4

www.manaraa.com

This thesis begins to answer the first of the two sub-questions which we will refer

to as the identification question (note that the second question is not relevant unless the

first has been answered). The scope of the work is focused on systems with automated

planning and goal reasoning methodologies. That is, we are concerned with agents that

have explicit goals, generate plans to achieve their goals, and execute their plans in dy-

namic and complex environments. Furthermore, goal reasoning agents may formulate

new goals, and self-select which goals to pursue over the course of their lifetime.

One of the primary motivations for goal reasoning is that when something unex-

pected occurs, it may be better to change one’s goal(s) instead of re-planning. For

example, suppose an autonomous mars rover needs to identify a nearby exposed rock

and collect a sample. The original goal is to obtain a photograph and a piece of the rock.

However, while the agent is navigating towards the rock, a storm begins blowing large

amounts of sand, covering the rock. In this situation, the original goal may no longer

be ideal because the rock is no longer exposed and the agent will need to remove a sig-

nificant amount of sand in order to continue. It may be better for the agent to change its

goal to look for nearby rocks or return another day. Goal reasoning agents have a higher

level of robustness than re-planning only agents, since they are concerned with not only

how to achieve their goals, but also which goals to pursue. We focus specifically on

the Goal-Driven Autonomy (GDA) model which is one such implementation of goal

reasoning. The defining characteristic of GDA agents is that they adhere to a four step

cycle:

Step 1: Discrepancy Detection observes the environment for anomalies, and when found,

generates corresponding discrepancies D.

Step 2: Explanation generates explanations E for discrepancies D.

5

www.manaraa.com

Step 3: Goal Formulation may generate new goals Gnew taking into account the dis-

crepancies D and explanations E.

Step 4: Goal Selection selects which goals the agent will pursue next. Goal selection

finishes the GDA process until it is triggered again during discrepancy detection.

In our attempt to answer the identification question, we focus on the first step, dis-

crepancy detection, in GDA agents. Significant previous work has been carried out

developing the remaining Steps 2, 3, and 4 (see Chapter 2 for some examples). Dis-

crepancies are the violations of expectations observed when an agent finds itself with

an anomalous or unexpected situation. Discrepancy detection uses expectations to find

discrepancies. Expectations are knowledge artifacts that enable agents to check if they

are operating as intended. When dealing with unknown situations, one must start with

what is expected behavior and use that to derive unexpected behavior. The representa-

tion of expectations will vary among domains; in a real-time strategy game like Star-

craft, it could be logically inferred concepts; in a mars rover domain, it could be an

accumulation of actions’ effects. The contributions of this thesis are concerned with the

generation, representation, and use of such expectations.

The contributions are briefly summarized as:

• New classes of GDA Expectations

– Informed Expectations: Using the description of an agent’s actions, accu-

mulate the effects of actions executed thus far by the agent.

– Inferred Expectations: Using a semantic ontology to infer abstract concepts

by reasoning over directly observable facts in the environment.

6

www.manaraa.com

– Hierarchical Expectations: Using a hierarchy of expectations that corre-

spond to a hierarchical plan for plan execution.

– Metacognitive Expectations: Using heuristic-like knowledge about cogni-

tive processes to identify domain-independent failures that occur in cogni-

tive processes.

• Formalization of the Guiding Sensing Problem: A problem where agents experi-

ence a trade-off between minimizing sensing costs and maximizing goal achieve-

ment in dynamic and partially observable environments. The Guiding Sensing

Problem assumes the agent has a capability to verify its belief state by perform-

ing additional sensing at some cost.

• Empirical validation of these concepts: A number of domains are used to validate

performance benefits of such techniques in dynamic domains that range in fully

observable to partially observable, including one domain, NBeacons, that changes

over time.

A guide to the contributions of this work and their corresponding locations in this

document are shown in Table 1.1.

A formalism of GDA expectations is touched upon in every chapter in Part II: Con-

tributions. Chapter 4 describes expectations generated from a Hierarchical Task Net-

work (HTN) planner. Chapter 5 extends the formalization of approaches to expectations

by introducing eager expectations as well as describing how informed expectations

can be used by plans of length 1. Chapter 6 formalizes expectations by distinguishing

between primitive and compound expectations as they relate to ontological inference.

Chapter 7 describes hierarchical expectations for hierarchical plans. Finally, Chapter 8

7

www.manaraa.com

Contribution Chapters
A formalism of GDA expectations 4, 5, 6, 7, 8
Informed expectations: an improvement to previous ap-
proaches in dynamic and partially observable domains

4, 5

A formalism of the guiding sensing problem 5
LUiGi : A GDA agent for the Real-Time Strategy Game
Starcraft: Broodwar that uses inferred concepts as expecta-
tions to enable high-level planning

6

LUiGi-H : A GDA agent that extends LUiGi by using hier-
archical plans and hierarchical expectations.

7

A formalism for hierarchical plans and hierarchical expec-
tations

7

An ontology for the domain of Starcraft: Broodwar, includ-
ing concepts inferred from low-level triples

6, Appendix A

Formalism of the notion of metacognitive expectations 8

Table 1.1: Locations of contributions

formalizes metacognitive expectations, giving an example of expectations for individual

cognitive processes.

Chapter 4 introduces the informed expectations approach to expectations and 5 dis-

cusses how they are useful in partially observable domains requiring exploration for

goal achievement.

Chapter 5 formalizes the guiding sensing problem. The guiding sensing problem

describes situations in which an agent must decide what additional sensing is cost-

effective in domains that are dynamic and partially observable. When an agent interacts

with an object as and moves out of sight of that object, the object’s status may change.

By performing additional sensing the agent could determine the true status of that object

with some cost. Determining which objects are relevant to goal achievement provides a

basis for sensing targets.

LUiGi is an agent that uses inferred concepts as expectations, enabling a higher level

planning. Chapter 6 describes the inference mechanisms and system architecture used

8

www.manaraa.com

to detect discrepancies in the Real-Time Strategy game Starcraft: Broodwar. LUiGi-

H is an extension of LUiGi that makes use of hierarchical plans and corresponding

hierarchical expectations. The ontology is given in Appendix A.

Metacognitive expectations begin to solve the problem of identifying discrepancies

originating in an agent’s own cognitive processes. Using a model for mental states and

mental actions (a mental action represents a cognitive process), we formalize metacog-

nitive expectations regarding individual mental actions.

Chapter 9 provides descriptions of six new domains: Marsworld1, Marsworld2,

Arsonist+, NBeacons, BlocksCraft. Empirical results follow demonstrating the ben-

efits of certain approaches.

This document is organized as follows. We give a background of related topics in

Chapter 2. Chapter 3 contains a literature review of the state of the art in agents using

discrepancy detection in planning and execution and goal reasoning research. Chapter 4

introduces informed expectations in HTN planning and execution. Chapter 5 introduces

the guiding sensing problem and how informed expectations can be used for sensing.

Chapter 6 presents an approach of using an ontology for inferred expectations which

enable high level planning actions. Chapter 7 discusses an agent that can play full

games of Starcraft by combining Case Based Reasoning, GDA, and high level planning

operators. Chapter 8 introduces a formalism for metacognitive expectations. In Part

III: Conclusions, we present future research (Chapter 10) and summarize the thesis in

Chapter 11.

9

www.manaraa.com

Chapter 2

Background

2.1 Planning

Many goal-driven autonomy agents employ planning capabilities. Planning is a prob-

lem of finding the actions needed to reach a goal. Informally, planning is a process that

performs a search over actions and states. Actions have applicability conditions (often

referred to as preconditions) that restrict in which states they can be applied. Here, a

state is some representation of the environment. For example, consider a one-armed

agent and an action to pickup an object. The pickup action can only be applicable if

the agent is not already holding an object. Actions cause changes to new states (usually

referred to as effects). In the example of the one-armed agent successfully executing

the pickup object action, the agent would find itself in a new state where the object is

located in its hand and not located on the table. By planning, an agent can generate a

sequence of actions to take in order to change the current state into a state that contains

the agent’s goal.

More formally, given a model of the domain in the form of a state-transition system

10

www.manaraa.com

Σ = (S,A, γ) where S is the set of all states, A is the set of all actions, and γ : S×A→

S is a function that given a state si and action ai produces the subsequent state si+1 after

ai is executed in state si. A planning problem P is defined as P = (Σ, s0, g) with s0 as

the initial state and g as the goal state to be reached. A solution to the planning problem

P is a plan. π, which is a sequence of actions < a0, a1, ..., an > such that each action

applied to the starting state s0 will result in a g ⊂ sn+1 where sn+1 is the state of the

world after executing the last action in the plan and the goal is reached.

The actions that compose a plan are instantiations of planning operators. A planning

operator o is a tuple (head, params, pre, post) where head is the name of the operator,

params are the arguments to the operator, pre is the preconditions of the operator, and

post is the postconditions of the operator. For an operator to be applicable in a given

state, the preconditions pre must be valid in the state. The postconditions post of an

operator represent the changes to the state after the operator as been executed.

Head activate-beacon
Params ?agent, ?loc, ?bcn
Pre agent-at(?agent, ?loc), beacon-at(?bcn, ?loc), deactivated(?bcn)
Post ¬deactivated(?bcn), activated(?bcn)

Figure 2.1: Operator Definition for activate-beacon

activate-beacon(Curiosity, (5,4), B7)

Figure 2.2: Instantiated Action of activate-beacon

{activated(B2), activated(B5), activated(B7) }

Figure 2.3: Example of a goal to activate beacons B2, B5, and B7

11

www.manaraa.com

Figure 2.1 shows the operator definition for activate-beacon and Figure 2.2 shows

an action instantiated from this operator. The instantiated action activate-beacon shown

in Figure 2.2 is only applicable in a state that has the instantiated preconditions met:

agent-at(Curiosity, (5,4)), beacon-at(B7, (5,4)), deactivated(B7).

Goals are represented as subsets of states. For example, a goal to activate beacons

B2, B5, and B7 would take the form shown in Figure 2.3. Goals can be combined via

a set union operation if there are no contradictory atoms. For example, individual goals

to activate beacons B2, B5, B7 are easily combined into the goal shown in Figure 2.3

12

www.manaraa.com

2.1.1 Domain Representations

The autonomous agents used in this work use an explicit model of the environment1.

Domains are represented as a set of atoms. An atom is defined as a predicate (e.g.,

activated) and 1 or more parameters (e.g., B7). An atom represents a fact in the envi-

ronment. In the NBeacons domain (described in Section 9.1.6) an agent navigates a grid

with the purpose of activating beacons. Beacons are activated when an agent is in the

same location as a beacon and executes an activate-beacon action. A visual diagram of

an initial scenario, S0, is shown in Figure 2.4 and the corresponding collection of atoms

representing S0 is shown in Figure 2.1. Figure 2.5 shows a valid plan to achieve the

goal activated(B6) given that the start state is S0 shown in Figure 2.4.

Figure 2.4: NBeacons Example Scenario: a represents the agent, integers between 0-9
represent beacons B0-B9, and ∼ represents sand pits

1The terms domain and environment are used interchangeably

13

www.manaraa.com

agent-at(Curiosity,(10,10)) deactivated(B0) sand-at((8,7))
beacon-at(B0,(9,10)) deactivated(B1) sand-at((0,5))
beacon-at(B1,(7,8)) deactivated(B2) sand-at((0,6))

...
...

...
beacon-at(B9, (14,11)) deactivated(B9) sand-at((14,12))

Table 2.1: Set of atoms corresponding to example state S0 in Figure 9.2

1: move-east(Curiosity,(10,10),(11,10))
2: move-north(Curiosity,(11,10),(11,9))
3: move-east(Curiosity,(11,9),(12,9))
4: move-east(Curiosity,(12,9),(13,9))
5: move-south(Curiosity,(13,9),(13,10))
6: activate-beacon(Curiosity,(13,10),B6)

Figure 2.5: Plan to achieve goal activated(B6) from state S0

2.1.2 Hierarchical Task Network Planning

Hierarchical Task Network (HTN) is a planning paradigm that uses domain-specific

knowledge about tasks to guide planning search. HTN planning has been shown to

be useful in many real-world domains, in part due to the naturalness of encoding the

domain knowledge by knowledge engineers (Nau, 2007). Knowledge is encoded within

methods which decompose tasks into subtasks. A task is a symbolic representation of

an activity in the world. Tasks can be primitive or compound. Primitive tasks are

accomplished by operators (e.g., activate-beacon).

A compound task is a symbolic representation of a complex activity. An HTN

method describes how and when to decompose compound tasks into simpler tasks. A

method is a triple m = (h, pre, subtasks), where h is a compound task, pre are the

14

www.manaraa.com

preconditions of the method, and subtasks is a totally-ordered sequence of tasks. An

example compound task in the Marsworld1 domain is the navigate task (Figure 2.6).

The corresponding method, move, achieves the navigate task by using a heuristic to

pick the next direction to move until the agent arrives at its destination. In the example

in Figure 2.6 the heuristic knows the destination is south of the agent and returns sub-

tasks to move south and then to recur on the navigate task. The move-south task is a

primitive task that decomposes to the move-south operator.

Head move
Params ?agent, ?dest
Pre ¬agent-at(?agent, ?dest)
Subtasks [(move-south, ?agent), (navigate, ?agent, ?dest)]

Figure 2.6: Method for navigate Task where destination is south of the agent

A method m is applicable to a state S and task t if h matches t and its preconditions

are satisfied in S. The result of applying method m on state S to decompose task t are

the subtasks (subtasks are said to be a reduction of t in state S).

An HTN planning problem is a 3-tuple (S, T,D), where S is a state, T = (t1, ..., tn)

is a sequence of tasks, and D is the domain consisting of a set of operators and a set of

methods.

A plan π = (a1...am) is a solution for the HTN planning problem (S,T,D) if the

following are true:

Case 1. If T = ∅ then π = () (i.e., m = 0)

Case 2. If T 6= ∅ (i.e., m ≥ 1)

Case 2.1 If t1 is primitive and a1 is applicable in S and (a2...am) is a solution for

(result(a1, S), (t2, ..., tn), D)

15

www.manaraa.com

Case 2.2 If t1 is compound and (r1, ..., rd) is a reduction of t1 in state S and π is a

solution for ((r1, ..., rd, t2, ..., tn), S,D).

State-Variable Representation

All of the Hierarchical Task Network (HTN) planning in this thesis was implemented

with the SHOP planner (Nau et al., 1999), specifically the Python version, PyHop.

PyHop uses the state-variable representation (Bäckström and Nebel, 1995). Informally,

a variable can take one of several values (e.g., one may write above(x)=y to indicate that

block x is on top of block y) and a state S indicates specific values for each variable

(we also use a generic undefined value when variables have not been instantiated).

2.2 Goal Driven Autonomy

Goal Driven Autonomy (GDA) is a conceptual model of an agent that performs goal rea-

soning in addition to planning and execution (Muñoz-Avila et al., 2010a; Klenk et al.,

2013; Cox, 2007). It is part of a larger class of agents that have goal reasoning capabil-

ities (Aha et al., 2015; Hawes, 2011). Such capabilities include mechanisms to create

goals, select goals, and transform goals (Cox and Veloso, 1998). GDA agents perform

goal reasoning in response to anomalous events or behavior. GDA agents make use of

a four step cycle that first detect some kind of anomaly, then seeks to explain why the

anomaly occurred, uses the explanation to formulate a new goal, and finally decides

which goal(s) to pursue. This four step process is what generally identifies an agent as

a GDA agent. A major underlying motivation for GDA agents is that, in the face of an

anomaly, it may be better to change one’s goal then replan. A diagram of a GDA agent

is shown in Figure 2.7.

16

www.manaraa.com

The four step GDA process is shown within the Controller. Since a GDA agent

is also an agent that can plan and execute those plans, it has other components (e.g

components to perceive, act, and plan). The diagram of Figure 2.7 shows multiple

components outside of the GDA process. These are often found in GDA agents, because

they enable planning and execution; once an agent has planning and execution, it may

benefit from the GDA process.

Figure 2.7 makes use of an environment model MΣ shown in the upper left. An

environment model consists of the agent’s actions and states. The state transition system

Σ is where actions are executed. After an action is executed the agent will perceive the

subsequent state. Often GDA agents start in some initial state s0 with some initial goal

g0. The planner (shown at the top) receives the model of the environment (actions the

agent can take and a state transition function, some state s (which is likely the current

state) and a goal g. The planner then returns a plan p with corresponding expectations

X .

As the GDA agent executes actions, the discrepancy detector component of the con-

troller checks the expectations X against the current state s. If a discrepancy d is found,

it is sent to the next GDA process of explanation. The explanation generator generates

an explanation e, for the goal formulator to use in generating one or more goal(s) g

to pursue. Then the goal manager updates the current goal g. At this point, the new

goal g will be sent to the planner and the current plan will be updated with the new

plan produced by the planner. As long as the discrepancy detector does not detect any

anomalies, the GDA processes of explanation generation, goal formulation, and goal

manager do not generally run. Discrepancy detection often starts the GDA process.

Also, Gp represents the pending goals of the agent (the first pending goal is the initial

goal g0).

17

www.manaraa.com

Figure 2.7: A basic model of a Goal Driven Autonomy agent (Molineaux et al., 2010)

For example, when discrepancies occur, the GDA process will result in potentially

new alternative goals. An example, adapted from Molineaux et al. (2010), involves an

agent performing navy operations. A naval convoy is in route to deliver some equipment

and along the way an escort vessel identifies an unknown contact. At this point the agent

could pursue one of multiple alternative goals including (1) abort the mission and route

back the vessels to the departing port, (2) hold the convoy and send escort vessels to

identify the contact.

18

www.manaraa.com

2.3 Expectations

From the literature on planning and execution, given a plan, there are three kinds of

expectations that can be generated: immediate, state, and goal regression. Informed

expectations, one of the primary contributions of this work, is described in detail in

chapters 4 and 5.

The first form of expectations are immediate expectations. Given a plan π =

(a1...am), the immediate expectation, EXimm(S, π) = (pre(am), eff (am)). That is,

EXimm(S, π) consists of the preconditions and effects of the last action in π. The same

definition can be applied to any prefix of the plan. Immediate expectations check the

validity of the next action to be executed.

The second form of expectations are state expectations. Given a state S and a plan

π = (a1...am), Result(π, S), applying a plan to a state, extends the notion of applying

an action to a state, Result(a, S), as follows:

Case 1. If π = (), then Result(π, S) = S

Case 2. If π 6= (), then Result(π, S) =

Result((a2, ..., am), Result(a1, S))

We assume that action a1 is applicable in S and that every action ak (k ≥ 1) in π

is applicable to state Result((a1, ..., ak−1), S). Otherwise, Result(π, S) = nil. This

recursive definition computes the resulting state for any prefix of the plan and checks

the complete state after each action is executed.

Immediate expectations and state expectations are straightforward to compute within

the SHOP planning algorithm (due to space limitations and because of their simplicity

we describe them verbally here). Immediate expectations are computed by building

a list of expectations as the plan (i.e., list of actions) is generated. Each time a new

19

www.manaraa.com

action is appended to the plan, that action’s definitions (i.e., preconditions and effects)

are added as an expectation to the expectations list. State expectations are generated

in an analogous manner; namely, a list of expectations is generated alongside the plan.

The next state is stored after the current action is applied to the previous state (like any

forward state-search planner, SHOP maintains the current state).

20

www.manaraa.com

Chapter 3

Literature Review

The following literature review is a summary of papers related to discrepancy detec-

tion within the scope of goal driven autonomy agents. Much of the literature around

detection of unexpected situations mostly focuses on the response to the detection as

opposed to the detection itself.

The success of the planning field within the AI community has largely focused

on planners for static, closed-world domains. Adapting these planners to dynamic,

open worlds opens many challenges including how to discern if the plans execution is

continuing as expected and how to react when this is not the case. A crucial step in

dealing with these challenges is detecting discrepancies. Discrepancy detection is the

mechanism by which the agent comes to know something unexpected has occurred,

usually preventing the agent from reaching its current goal(s). The following literature

review surveys the breadth of approaches used for discrepancy detection.

The focus of this thesis and subsequently, this literature review, is concerned with

intelligent agents and the difficulty that arises from planning and execution in dynamic,

complex domains. Such domains offer many challenges to independent agents, and

21

www.manaraa.com

are increasingly in demand as robotics continues to pervade real-world environments.

Most agents in the work surveyed make use of a planner to accomplish their goals.

A planner, in general, is a mechanism for reaching a goal state in an environment via

a (partially or totally) ordered set of steps: concrete and simple actions that can be

executed directly. As the agent executes these actions it performs discrepancy detection.

Due to the dynamic nature of these domains, changes may occur at any time that prevent

the agent from accomplishing its goals.

Discrepancy detection is the mechanism by which the agent comes to know some-

thing unexpected has occurred, usually preventing the agent from reaching its current

goal(s). Discrepancy detection relies on knowledge of what is expected behavior, which

comes in different forms. Vattam et al. (2013) describes an overview of various types

of discrepancy detection performed by different agents. Table 3.1 lists the type of dis-

crepancy detection, source of knowledge for performing discrepancy detection, and

lists the papers within this review which use that form of discrepancy detection. While

these types of discrepancy detection do not contradict each other, it so happens that

the papers surveyed here tend to only use one form of discrepancy detection: using the

preconditions and effects of actions from plan.

Dealing with dynamic, complex, open worlds is difficult. Discrepancy detection

is the first step to enable planning endowed agents to execute their plans in these do-

mains. Adapting these planners to dynamic, open worlds is not trivial. Talamadupula

et al. (2010) describe three ways these planners are trivially adapted to open worlds: (1)

blindly assuming that the world is indeed closed, (2) deliberately “closing” the world

by acquiring all the missing knowledge before planning, and (3) accounting for all con-

tingencies during planning by developing conditional plans. None of these solutions

are ideal. Assuming a closed world as in (1) requires frequent re-planning during exe-

22

www.manaraa.com

cution and can also lead to highly suboptimal plans in the presence of conditional goal

rewards. In big open worlds, it is infeasible or impossible to acquire all knowledge in

order to “close” the world as in (2). Lastly, contingency planning mentioned in (3) is

known to be impractical in propositional worlds with bounded indeterminacy - which

is the case in open worlds where the number of objects and their types are unknown.

The discrepancy detection approaches in this paper are more realistic attempts to enable

planning capable agents the ability to operate in these increasingly real-world domains.

The literature review is organized as follows: Section 3.1 provides a brief summary

of the approaches used in Table 3.1. Section 3.2 discusses work around detecting fail-

ures for a specific plan and goal. Section 3.3 discusses the problem of detecting and

adjusting planning search for discrepancies that occur at planning time. Section 3.4

discusses work dealing with detecting predicted failures. Section 3.5 discusses work

on detecting anomalies not associated with a plan. Section 3.6 discusses domain-based

approaches while Section 3.7 discusses object-based approaches. Finally, Section 3.8

summarizes the review, particularly noting various nuances and trade-offs of perform-

ing discrepancy detection as well.

3.1 A Classification of Plan Execution Monitoring

Systems

As shown in Table 1, Vattam et al. (2013) describes five approaches to discrepancy

detection. First, plan monitoring is using information from the plan to detect anoma-

lies. Discrepancies can be detected by checking the preconditions and effects before

23

www.manaraa.com

Discrepancy
Detection
Approach

Source of
Knowledge

Papers

Plan Monitoring Planner;
preconditions,

effects of actions

(Ayan et al., 2007), (Benson and Nilsson,
1993), (Fox et al., 2006), (Sugandh et al.,

2008)
Periodic

Monitoring
Whole

environment at
intervals

(Rao and Georgeff, 1995)

Expectation
Monitoring

Agent’s specific
knowledge base

(Bouguerra et al., 2007), (Veloso et al.,
1998), (Kurup et al., 2012), (Cox, 2007)

Domain-based
Monitoring

Model of the
environment

(Coddington et al., 2005), (Hawes et al.,
2011)

Table 3.1: Different Approaches to Discrepancy Detection

and after actions are executed. Often the agent’s planner returns both a plan and corre-

sponding expectations to be checked at each step of the plan. There has also been work

done to monitor the optimality of plans compared to alternative plans; if the current

plan is deemed suboptimal or predicted to fail, an alternative plan can be chosen.

Second, periodic monitoring is defined as an agent that monitors the environment

and uses that as a knowledge source for managing goals. Essentially the agent checks

the environment at designated intervals. Periodic monitoring is frequently used in real-

time systems.

Third, expectation monitoring is using knowledge about past experiences to create

expectations and using them to monitor parts of the environment like in Veloso et al.

(1998). Agents also use models of the environment (can be learned) to identify normal

vs. anomalous behavior.

Fourth, domain-specific monitoring is monitoring specific variables in the state,

and testing those values during plan execution. This approach is similar to expecta-

tion monitoring, except expectation monitoring is generally specific to a plan where as

24

www.manaraa.com

domain-specific monitoring can be used to trigger new goals to be formed at any time

(Coddington et al., 2005).

3.2 Detecting Plan and Goal Failure During Execution

Much work on discrepancy detection is concerned with obstacles that cause task failure.

This section provides an overview of these specific approaches. The common theme

among these approaches is that they are all focused on the current plan (and goal) of

the agent and they generate expectations using planning knowledge1 A non-exhaustive

list of approaches are shown in Table 3.2. The papers listed in the third column use the

approach described.

3.2.1 Using Dependency Graphs for Plan Repair

Ayan et al. (2007) present a system coined HOTRiDE that detects plan failures and

repairs plans using a novel technique involving a dependency graph. The dependency

graph is a data structure that links the effects of an action in a plan satisfying the precon-

ditions of later actions in the plan. These links explicitly show which actions depend on

other actions. Thus, when an action fails it is possible to know what other parts of the

plan will be affected, and those parts not affected. This is done by starting at the failed

action and traversing its forward links in the dependency graph. This way the agent can

determine what parts of the plan need to be re-planned for as well as what parts of the

1The work by Bouguerra et al. (2007) uses additional knowledge about the domain, but the initial
expectations are derived from plan domain knowledge.

25

www.manaraa.com

Approach Description Cited Works
Individual
Action
Expectations

Before executing an action,
check that the preconditions
of the action hold; After exe-
cuting an action, check the ef-
fects are true in the environ-
ment; During action execu-
tion check to see if alive con-
ditions hold (optional)

(Sugandh et al.,
2008)
(Ayan et al., 2007)
(Bouguerra et al.,
2007)

Informed
Expectations

Build up cumulative effects
from all previous actions thus
far

(Dannenhauer
and Muñoz-Avila,
2015b)

Goal
Regressed
Expectations

Regress over all precondi-
tions and effects for each step
in the plan leading up to the
goal

(Fritz and McIlraith,
2007)

State
Based
Expectations

Use whole states, stored dur-
ing the planning process, and
compare at execution time
against the perceived state

(Cox et al., 2012)
(Klenk et al., 2013)
(Fox et al., 2006)

Table 3.2: Plan and Goal-based Discrepancy Detection Techniques

26

www.manaraa.com

plan can be reused. In this way, the agent could save time re-planning as well as having

more optimal plans.

The authors evaluate their agent in a simulation environment that randomly decides

to fail an action. The discrepancy detection approach here simply checks to see if the

current action has failed. They test the agent against a baseline system using only the

SHOP planner Nau et al. (1999) that simply re-plans from the point of failure, which

may be suboptimal. The results show that by repairing a plan HOTRiDE is able to

spend less time planning and maintain optimal plans. An optimal plan is one which has

the smallest amount of steps in order to achieve the goal.

The authors run three experiments: (1) SHOP and HOTRiDE compared against each

other, each given a number of goal tasks to be accomplished. Results show HOTRiDE

can revise more often than SHOP, causing more goals to be accomplished. (2) They

modified their domain to add special knowledge (’bookkeeping’) and SHOP essentially

performed at roughly the same competency as HOTRiDE. Important because it shows

HOTRiDE does not need that special domain knowledge. (3) The third experiment

looked at the average number of actions needed to accomplish goals. Here, HOTRiDE

keeps modifications to an optimal minimum level, while SHOP often re-planned previ-

ously achieved goals and trying to re-achieve them.

To conclude, the length of the plans found by HOTRiDE in the experiments was

always optimum which indicates that HOTRiDE preserves the goals accomplished pre-

viously and makes minimum number of changes in the original plan. The discrepancy

detection approach here is an example of checking individual actions.

27

www.manaraa.com

3.2.2 Teleo-Reactive Agents

Benson and Nilsson (1993) describe a breadth of work for an autonomous agent archi-

tecture that: (1) quickly reacts to environmental situations taking goals into account,

(2) selects goals to achieve in the presence of multiple, competing goals, (3) plans new

action routines, and (4) learns effects of actions to be used later by the planner. For the

purpose of this literature review, only how the agent detects and respond to failures is

considered.

This work makes use of a Teleo-reactive (TR) planning and acting paradigm. Teleo

refers to the ability for actions to be influenced by the goals of the agent while reactive

refers to the ability for agents to respond quickly (within A.I. in general, reactive agents

are not usually goal oriented). The agent’s planning component is composed of a TR

program library, where TR programs are collections of rules of the form condition→

action. A condition refers to a variable in the state, and an action is similar to a STRIPS

style operator. An example rule might contain a condition that the agent’s distance from

an object of type bar is less than some value x, and the corresponding action would be

pickup-bar. Rules in TR programs fire when their conditions are met. In this example,

when an agent gets close enough to a bar, it will pick it up. TR programs contain many

rules which are organized in a hierarchy so that rules with the weakest conditions are

the rules that fire first, and when the action of that rule is achieved, it triggers a condition

in a rule higher up in the hierarchy. Conditions can be conjunctive and can be created

so that parallel TR subprograms can be in any order. Actions are STRIPS style but can

be either durative or atomic. STRIPS operators are discrete with definite effects. In

order to achieve durative STRIPS style operators, the authors introduce teleo-operators

(TOPs).

28

www.manaraa.com

Teleo-operators (TOPs) are defined for condition → action rules of TR programs.

For any literal λi (condition) and any action aj , a TOP can be defined, τij , that de-

scribes the process of continuously executing aj until λi becomes true. TOPs have four

components:

1. name of the action, a

2. postcondition literal λi, that is the intended effect of the TOP

3. a preimage of, π, of the TOP which is the weakest condition under which con-

tinuous execution of a will eventually satisfy λ while maintaining π until λ does

come true. (this is analogous to STRIPS preconditions)

4. a set of side effects S, of the TOP. A side effect is a literal, σ, which is not

necessarily true at the time action a was begun but (usually) becomes true by the

time λ becomes true.

The authors elaborate on side effects describing positive side effects as “roughly

corresponding” to a STRIPS add list, and negative side effects to STRIPS delete list. In

this way, it seems TOPs are not any different than STRIPS operators except some parts

of them are finer grained to be able to be used in robotic platforms.

The authors mention that for large TR programs, it is impractical to search the entire

space of condition→ action rules for each time step. To handle this the authors use a

heuristic to select the next condition to check. The heuristic is as follows: at each

new time step, the agent remembers which condition → action rule was active in the

previous time step. It assumes that the action of the last time step will remain active

until it finishes successfully, at which point in the new time step, the parent condition→

action rule containing the condition from the previous rule, will be checked. This allows

29

www.manaraa.com

the agent to only have to check 2 rules in each time step: to see if the previous rule is still

active, and if not, to see if the parent rule is active. The authors note that this heuristic

runs in constant time and works generally as well as checking all of the rules (thus this

heuristic saves a lot of time). However, if the current action fails, it causes a problem

for the agent, as now the constant time heuristic can no longer be applied. Also, while

actions are being executed, the agent spends a little chunk of computation searching a

subset of rules higher in the hierarchy. If any of those conditions happen to be met, the

agent automatically switches to that condition→ rule and begins executing that action.

In response of failures, the authors simple say that a delay in the agent occurs due to

having to search over all of the rules in order to reassess where it should begin. The

authors report that since a delay in the agent is due to a failure, it is reasonable.

It is interesting because this kind of teleo-reactive approach might become very

fragile if an agent with large TR programs operates in a very dynamic environment

and these changes cause action failures. However, it seems similar enough to STRIPS

planning that STRIPS-style (preconditions, effects, etc.) expectations can be used. In

this paper, the discrepancy detection approach used is an example of individual action

failure.

3.2.3 Case-based Planning in Wargus

Sugandh et al. (2008) present a plan adaptation technique for an agent that plays full

Real-Time Strategy (Wargus) games. The main idea is that they use a dependency graph

for plan adaptation, similar to Ayan et al. (2007). In terms of discrepancy detection,

failures were detected by looking up direct features in the state or by comparing states

to see if that state had changed. Unfortunately, the paper did not go into much detail

30

www.manaraa.com

about this. Here, the behaviors were procedural (meaning a function call was used to

carry out the action) so postconditions (effects) were not available. This limits the

ability to compute expectations based on the effects of actions. In these agents, where

the effects of an action is not known (or has many possibilities), expectations are not

easily computed or checked. One possibility could be to learn the set of effects an action

produces, or use inference to lump many different states into a single category that can

be used as an expectation..

3.2.4 Semantic Execution Monitoring on a Mobile Robot

Bouguerra et al. (2007) describe an agent that uses semantic knowledge in order to

validate its expectations of its current location. For example, if it expects to be in the

room kitchen it assumes it will be able to sense objects specific to a kitchen environment

such as having an object of type sink and counter. The authors implemented a system,

on a Magellan Pro mobile robot, that was able to validate its expectations in a house-

like environment. The agent would generate information gathering plans to actively

sense which objects were in which room. The author’s experimental evaluation was

promising, with the agent performing well in a few test scenarios.

Using semantic knowledge to draw conclusions about what is to be expected in en-

vironments is a step towards solving agents in large, complex, and open environments.

However this approach is knowledge intensive: the agent needed planning domain

knowledge and semantic knowledge about the environment. What is also interesting

about this approach is that simply verifying expectations involved a complete, separate

planning-execution cycle of generating information gathering plans to move about the

localized space (e.g., kitchen, bedroom) in order to more closely observe objects that

31

www.manaraa.com

could verify an agent’s location. Using this kind of semantic knowledge seems promis-

ing, especially with the rise of the semantic web, and also seems to introduce many

challenging aspects.

The authors mention the following areas for future work: (1) deeper experimental

validation that addresses scalability and richer domains, (2) The issue of when to en-

gage in information gathering needs to be investigated because it may be expensive,

(3) Selecting which expectations should be pursued in information gathering is impor-

tant because number of expectations might be big, (4) The authors discuss related work

(conducted by them) that uses a probabilistic approach that computes probabilities for

different action outcomes (i.e., different locations of the robot). This approach can sup-

port a more informed decision about whether or not to do information gathering. They

could use PTLPLAN, with probabilities, to compute an expected cost of the monitoring

plan.

3.2.5 Plan Stability vs. Plan Repair

Fox et al. (2006) introduce a new metric, plan stability, which they use to decide

whether to repair the current plan or re-plan from scratch. They argue that there are

many situations when the agent’s goals will change but will be similar enough to the

previous goal to warrant reusing parts of the previous plan. They define plan stability as

a measure of the difference of two plans. Given an original plan π0 and a new plan π1,

the difference between π0 and π1 is the number of actions that appear in π0 and not in π1

plus the number of actions that appear in π1 and not in π0. The authors use this metric

of plan stability as a modification within their local search based planner LPG to guide

the search. The details of the planner are outside the scope of this document, for more

32

www.manaraa.com

information see: (Gerevini et al., 2003). The authors perform extensive experiments on

four different temporal planning domains. The results showed that their technique was

an improvement over re-planning in terms of speed and plan quality (generally).

Although this paper introduces a novel approach to performing plan repair for a

temporal, local search based planner, they do not go into much detail about how they

detect discrepancies. The only clues they give the reader is that they only assume a few

literals or a few of the agents goal conditions have changed. From this, it is likely the

authors are simply using a complete state matching approach: if the expected state and

current state are different in any way, then a discrepancy is triggered and the authors

perform plan repair. This work is an example of state based expectations.

3.3 Detecting and Responding to Failures During

Planning

The process of planning may take a considerable amount of time, long enough to war-

rant adjusting the process in the face of changes in the environment. Veloso et al.

(1998) consider how to adjust the planning process when changes from the initial start

state have been detected. In this way, the changes may not yet be considered discrep-

ancies as described earlier because the current plan (as its being formed) is taking these

changes under consideration. Thus the new plan will have accounted for any changes

from the time planning began until planning finishes.

The process described in the paper is composed of three steps: (1) Generate moni-

tors for relevant features in the state, (2) Deliberate over changes from these monitors

to see if the plan being constructed should change, (3) Alter the plan being constructed

33

www.manaraa.com

to take into account changes in the state. The authors only focus on (1) and (3), leaving

(2) for future work.

Monitors, as in (1), are generated in two ways. The first takes into account all parts

of the state related to the current best plan the planner is constructing. This includes

the preconditions of every operator in the plan. Should the values of the preconditions

change, then the operators in the current plan will likely be affected. The second way

monitors are generated involve using features relevant to operators not chosen for se-

lection in the current best plan. The idea being that if the values of those preconditions

change, it may warrant switching to a better, alternative plan.

Both of the monitor types generated make use of specific classes of monitors. Sub-

goal monitors deal with the preconditions and bindings of operators. Usability-condition

monitors are similar to subgoal monitors except they focus on usability conditions in-

stead of preconditions. Quantified-condition monitors take into account preconditions

containing universally quantified predicates. Essentially these monitors will observe

the set of objects related to the predicate (i.e., if the predicate involves all the packages

in a city, this monitor will watch to see if the number of packages changes).

When monitors identify a change in the environment, the current best plan may be

altered. Plans are altered in three ways: (1) adding operators to a plan, (2) removing

operators from a plan, and (3) jumping in a plan. Adding operators to the plan, (1), may

be necessary if two monitors fire. If Subgoal monitors fire because a condition required

for an operator in the current plan was made false, more actions may be needed to

insert operators to enable that condition. If quantified-condition monitors fire then the

precondition involving the quantified condition may no longer be valid. For example,

if a new package appears, the condition holding-all-packages may need extra operators

inserted into the plan in order to go pick up the new package.

34

www.manaraa.com

Removing operators from the plan, (2), operates in just the opposite way as above.

If some condition that was false in the state becomes true, the part of the plan that

establishes that condition no longer is necessary. For example, if a package is removed

from the state then the part of the plan to go pick up that package can be cut.

Jumping within the plan, (3), can happen because of any monitors, essentially when-

ever an alternative plan becomes more attractive then the current plan.

The authors performed experiments using Prodigy. They created an artificial plan-

ning domain using fairly simple and straightforward operators that were not related to

any kind of real-life scenario. As a result, the authors were able to vary the number

of operators in the solution plan from 1 to 30. The authors fix the number of binding

possibilities for the operators to be 2. During planning, two monitors fire, observing

change the initial state. These changes happen at planning step 0,10,20. The results

showed that when the monitors fired, the planner was able to find a plan more quickly,

but the later the monitors fired, the less planning savings to be had (because the planner

had already done a significant amount of work).

This paper presents a very novel and important contribution to work on discrepancy

detection. Being able to produce plans that have no discrepancies in the current state at

the time planning finishes is extremely important for agents requiring long periods of

time to plan. Without being able to modify planning, you could run into infinite cycles,

where the agent starts planning, then the world state changes, planning finishes, and

when the agent goes to execute the plan it fails, and must restart planning.

The only drawback to this paper was the experimental evaluation, which was quite

limited. Specifically, more experiments which increase and vary the kinds of changes

in the state as well as report on plan optimality would be very helpful. It would also be

nice to observe what properties of domains cause more or less problems to this planning

35

www.manaraa.com

approach (i.e., benchmarking this technique on many existing planning domains). One

way to do this would be to randomly choose to change the state at any given plan step

in each domain. How often changes happen could also vary, seeing at what point a

domain is too dynamic to plan efficiently. It may be the case that in very dynamic

domains, this approach will not work because the planner may never finish planning if

it is constantly adjusting due to constant changes in the state. Nevertheless, this work

is a solid contribution and plays an important role in agents with non-trivial planning

problems.

3.4 Detecting Future Failures

Rao and Georgeff (1995) summarize the theory of Belief Desire Intention (BDI) agents

and describes an evaluation of a BDI agent that manages an air-traffic management

application. BDI agents are composed of three major components: beliefs, desires, and

intentions. Beliefs are different from knowledge, in that it is only what the likely state

of the environment is, whereas knowledge is considered to be more absolute. Desires

are the motivational aspect of the agent, essentially its goals or objectives. In the formal

model presented in the paper, desires correspond to any path through the execution tree.

Intentions are the course of action that the agent has decided to take via its selection

function. Their theoretical discussion how to handle changes in the environment is

interesting. Essentially they describe two kinds of situations that can arise. First, the

environment may change when the agent is selecting which actions to execute. One way

to address this is to reduce the time it takes to perform selection which may result in

less than optimal selection. The second situation that can arise is when the environment

changes during the course of action chosen from the selection function. The authors

36

www.manaraa.com

provide an enlightening discussion in the paper about handling the second situation:

the environment changing during some course of action.

There are two straightforward approaches on either end of the spectrum. On the

one side of the spectrum, as soon as the agent becomes aware of changes, it re-applies

its selection function to choose a different course of action (analogous to re-planning).

Alternatively the agent can ignore changes until it finishes its course of action (ignore

the discrepancy outright). The authors Rao and Georgeff discuss this spectrum in fur-

ther detail. If a system always chooses one of these strategies (re-plan or ignore) it will

result in a negative outcome. It is likely that recomputing the choice of action for ev-

ery action is expensive but unconditional commitment would cause the agent to fail to

achieve its objectives as its actions become invalid (due to changes in the environment).

The authors then assume that if “potentially significant changes can be determined in-

stantaneously” it is possible to limit the frequency of reconsideration and thus achieve a

balance of too much reconsideration and not enough. Within the BDI architecture, the

intention component keeps track of the current course of action in order to effectively

solve this dilemma. This literature review is primarily focused on how to compute ex-

pectations which are used as a shortcut to know if changes in the environment require

deliberation about changing the intended course of action. The deliberation: within the

GDA community this is done through explanation and goal formulation.

The paper provides a theoretical foundation for discrepancy detection and the role

it plays in intelligent agents. A critique of this paper is the assumption that “potentially

significant changes can be determined instantaneously”. For large, complex domains

this may very well not be the case. In the paper’s evaluation, the BDI system is com-

posed of multiple agents: an aircraft agent for each arriving aircraft, and global agents

including a sequencer, wind modeler, coordinator, and trajectory checker. Within this

37

www.manaraa.com

system discrepancy detection was performed by the sequencer agent using hard-coded

knowledge. For example, the sequencer agent (responsible for coordinating arriving

aircraft) would only change its commitment to its current course of action if the action

completed (all aircraft landed) or the agent does not believe one of the current aircraft

will reach its destination by its current ETA. This is essentially an expectation based

on predictions of the environment given current knowledge now. The agent periodi-

cally samples the environment to re-evaluate its current course of action using these

hard-coded expectations.

3.5 Non-Plan-based Anomaly Monitoring

3.5.1 Classifying Other Agent’s Behavior

Kurup et al. (2012) performs discrepancy detection on image sequences of pedestrians

walking in an urban setting in order to classify human behavior as normal or suspicious.

This work is important as it shows that, in general, machine learning and classification

techniques can be used to generate expectations for processes unrelated to the agent

in the environment. The classification performed here is specific to the ACT-R Cogni-

tive Architecture. Their technique used a combination of partial-matching and blending

mechanisms2, which was able to generate future states it had never seen before. The re-

sults showed that their learning algorithm was better when it came to detecting multiple

features in the environment, but a kNN classifier was better for single behavior detec-

tion. Therefore in more complex environments, there technique is likely to perform

better than kNN classification.
2Because these mechanisms are unrelated to planning, many of the details are not reported here, see

Kurup et al. (2012) for more information

38

www.manaraa.com

3.5.2 Detecting Knowledge Discrepancies

Cox (2007) presents novel work dealing with explaining knowledge failures in a story

understanding domain, including the ability for the agent to use the same mechanism

to understand its own reasoning failures. A motivation of this work is that if an agent

is to be able to operate continuously and independently, an introspective component

is necessary. This work shows how a preliminary system is able to determine its own

goals by interpreting and explaining unusual events or states of the world. The resulting

goals seek to minimize the difference between its belief state and the world state. The

specific hurdle addressed in this work is for the agent to decide if it should do something

or learn something when there is an anomaly. The system generates goals to choose

which comprehension method (Case-based Reasoning, explanation generation, etc.) to

use to understand stories. When something anomalous or interesting is detected, the

system explains it and incorporates it to fit with the current understanding of the story.

It classifies actions as interesting and then tries to explain why someone would perform

that action3.

3.6 Domain-specific Monitoring

3.6.1 Internal vs. External Motivations

Coddington et al. (2005) explores two different methods of using motivations in a goal-

directed agent. The agent uses the stochastic and anytime planner ADAPT LPG. When-

ever a new goal is generated, it is passed to the planner, and the planner re-plans con-

sidering both the remaining current plan and the new goal. There are six specific mo-

3The paper does not go into any detail about how interesting and therefore anomalous actions are
described, as the main focus is on explanation

39

www.manaraa.com

tivations the paper mentions, four of which rely on thresholds and the other two use

specific knowledge about the environment.

The first method the authors use are motivations that generate explicit goals, which

are then sent to the planner. For example, the conserve-energy motivator generates a

goal recharge-battery when a threshold of battery level is reached. The explicit goal

recharge-battery is then sent to the planner, which plans to achieve the current goal

and the new goal. The second method the authors mention is encoding the threshold

knowledge in the planning knowledge so that the planner will only create plans that will

not violate the thresholds using expected values for how long actions will take.

The authors only give a qualitative description of the agent’s results but essentially

there are pros and cons to each approach. Motivators that trigger explicit goals when

values in the state exceed thresholds is nice for continuous autonomous behavior, in

that the agent will always be generating its own goals (especially if one threshold is

based on time). This is likely important in situations like the Mars rover, where it may

have limited communication with the source of its externally imposed goals. The sec-

ond approach, encoding thresholds in planning knowledge makes the planning problem

harder (two of the three planners the authors tested could not find plans and the third

planner produced a plan that was inefficient). However the third planner (SGPlan) did

produce a plan in which no thresholds were violated. There are some nuances to this

problem, for example some motivator thresholds are more resource-critical than others

which affected how easy it was for the planners solve the planning problem. However,

a major benefit of modeling mission-critical motivators implicitly in the planner is safer

plans. When the battery-resource motivator is modeled implicitly in the planner, the

planner cannot generate plans that will violate the battery threshold (i.e., if a plan gets

long enough, it will insert actions to go recharge the battery and continue). The alter-

40

www.manaraa.com

native is that the planner simply generates plans to achieve goals, and during execution

the agent must monitor its battery level: when it falls below the threshold it will send a

new goal to the planner to go recharge.

This is important work for discrepancies that are known to happen, are predictable

(i.e., the agent can predict how much battery it uses), and discusses the trade-offs be-

tween encoding motivators explicitly vs. implicitly within the planner. The authors

describe multiple areas for future research: (a) dynamically adjusting threshold values

and (b) deciding which goals to pursue among a set of goals (over-subscription plan-

ning).

3.6.2 Reasoning with Explicit Knowledge Gaps

In Hawes et al. (2011), a mobile robot named Dora is given an incomplete tour by a

human in an unknown environment. Dora is a robot that has autonomous behavior re-

sulting from the use of a goal generations and management framework, a planner, and

a spatial map-related knowledge base. Dora has drives (similar to motivators in Cod-

dington et al. (2005)) that are used by goal generators to generate goals. The particular

drive of interest in this work is the drive to have correct spatial knowledge of the envi-

ronment. This drive works with the goal generators to generate goals such as explore

and categorize each room in an apartment-like setting. Dora is also able to generate

goals to patrol, where Dora will go to previously visited ares to validate its knowledge.

The focus of this work from a discrepancy detection perspective is detecting faults

or gaps in Dora’s knowledge base. This is different than monitoring directly for actions

being in the state, but could be used in conjunction with validating actions (like how

semantic and map knowledge is used to interleave planning and execution in Bouguerra

41

www.manaraa.com

et al. (2007)).

3.7 Summary and Discussion

Discrepancy detection is an essential and difficult problem for agents operating in dy-

namic and complex environments. There are multiple choices of where to perform

discrepancy detection within the agent (during plan execution, during planning), what

to apply it to in the environment (agent’s own actions, external agents, external pro-

cesses), and trade-offs that need to be taken into consideration. In this chapter we’ve

looked at ways of monitoring the current plan and goal for possible failures: (Ayan

et al., 2007), (Benson and Nilsson, 1993), (Sugandh et al., 2008), (Bouguerra et al.,

2007), (Fox et al., 2006); directing sensing and responding to changes while planning

is happening: (Veloso et al., 1998); detecting future failures using prediction: (Rao

and Georgeff, 1995); detecting anomalies unrelated to the current plan: (Kurup et al.,

2012), (Cox, 2007); and finally, domain-specific monitoring: (Coddington et al., 2005),

(Hawes et al., 2011).

Due to the complex and agent-infrastructure dependent nature of discrepancy detec-

tion, interesting and non-trivial trade-offs and other issues arise:

• For agents equipped with explanation capabilities, discrepancy detection shares a

trade-off with explanation. At one extreme, an agent with an instantaneous and

perfectly accurate explanation system could simply explain every possible change

between the perceived state and expected state, allowing a trivial exact-matching

comparison implementation of discrepancy detection. However, explanation is

often very expensive, requiring depth-limited search and may not always be ac-

curate. Therefore using such techniques as described in the work survey is war-

42

www.manaraa.com

ranted, and can be taken in the perspective of moving some of the explanation

capabilities into the discrepancy detection mechanism.

• We have seen that deliberation and reasoning within the discrepancy detection

process itself can be beneficial (i.e., (Bouguerra et al., 2007) use semantic knowl-

edge to validate STRIPS style effects via information-gathering planning and ex-

ecution). When an agent observes a change in the environment that could be a

potential future obstacle, reasoning over the perceived obstacle may be beneficial:

If the obstacle is likely to remain in the environment and will prevent the current

plan from achieving its goal, the agent may be better off deciding to change its

course of action even though it could still execute part of its plan. However, if

there is a chance the obstacle may be removed on its own, the agent may decide

to continue. Thus, a discrepancy detection mechanism could have a deliberation

component dealing with impending obstacles.

• In a similar light to dealing with future obstacles is dealing with informed and

goal-regressed discrepancies. Suppose an effect from a previous action in the

current plan was needed for the goal, and that effect is no longer true in the

environment. The agent is now faced with the following options: (1) assume

the effect will not return to the environment and take some action to either re-

plan in order to achieve that effect and continue with the current goal, or change

its goal altogether, or (2) complete the rest of the actions in its plan, and then

check that all the goal conditions are met. If there is a likelihood that the effect

has only temporarily been nullified, then the agent could continue. However, if

the agent reaches the goal and the effect is still false, then the agent has now

wasted resources executing the actions between when the effect was made false

43

www.manaraa.com

and reaching the goal. For long plans, this becomes an important trade-off to

take into account and demonstrates another example of deliberation used within

discrepancy detection.

• Most work on discrepancy detection does not take into account that sensing the

environment is usually an action itself, that has both a direction (what part of

the state to observe) and a time (when to observe it) cost. Veloso et al. (1998)

consider the direction cost during the planning process by generating monitors

for specific features in the state and only looking at those monitors; however they

assume that those features can be observed anytime.

44

www.manaraa.com

Part II

Contributions

45

www.manaraa.com

Chapter 4

Informed Expectations from HTN

Planners

Correctly identifying a violation of expectations of a GDA agent can have a significant

impact on the performance of the agent. If the expectations are too narrow, then relevant

discrepancies might be missed. As a result, the agent will not change its course of action

(by choosing a new goal) in situations where it should have done so. If the expectations

are too broad, the agent might unnecessarily trigger the process to generate a new goal.

This could lead to the agent taking unnecessary actions that negatively affect the agent’s

overall performance.

Research on GDA agents has explored two kinds of expectations thus far (Muñoz-

Avila et al., 2010a; Molineaux et al., 2010). The first approach is to check if the precon-

ditions of the next action are satisfied before it is executed and to check that its effects

are satisfied after it is executed. We refer to these expectations as immediate expecta-

tions. This ensures the validity of the actions and the rapid evaluation of their appli-

cability. An argument can be made that since previous actions are already committed,

46

www.manaraa.com

there is no point in validating them. However, such evaluation ignores if the trajectory

of the plan is still valid (i.e., if its overarching objectives will be fulfilled). Consider an

agent that is navigating in an environment tasked with creating a signal where a valid

method of achieving the task is to activate beacons (the domain described here is called

Marsworld1 and described in more detail in Section 9.1.2.) In Marsworld1, there are

external factors which cause beacons to be disabled. When the goal of the agent is to

activate n beacons, and one of them becomes disabled after the agent has activated it,

the plan can fail to achieve the goal. An agent employing immediate expectations will

only check a particular beacon immediately after it is activated. In the event that the

beacon becomes disabled later, the agent will not detect the change. Therefore, imme-

diate expectations fail to detect relevant changes of actions’ effects if the changes occur

after that action has already been verified.

The second discrepancy detection approach explored is to annotate every action with

the expected state after the action is executed. We refer to these expectations as state

expectations. This ensures that the system not only validates that the next action is valid

(subsuming immediate expectations) but it also validates that the overall trajectory of

the plan being executed will fulfill its overarching goals. Continuing our example the

agent will detect beacons which it had previously switched on but were later disabled,

unlike an agent using immediate expectations. Yet unexpected differences in the state

do not necessarily imply that the plan trajectory or even individual actions are no longer

valid. For example, beacons unrelated to the agent’s goal might activate or deactivate as

a result of the environment. These changes do not affect the agent’s current plan. How-

ever an agent using state expectations will flag this as a discrepancy and may trigger a

process (such as GDA) to correct such a false discrepancy.

We introduce a new kind of expectation: informed expectations. Taking advantage

47

www.manaraa.com

of hierarchical task network (HTN) representations, which many GDA agents already

adopt, informed expectations not only validate the next action but the overall plan tra-

jectory without requiring validation against the complete state.

Section 9.2.1 shows an empirical validation in two variants of domains used in the

GDA literature. These experiments evaluate a GDA agent using informed expectations

versus alternative GDA agents that either check immediate effects or check for expected

states. Our experiments demonstrate improved performance of a GDA agent using

informed expectations.

4.1 Formalization of Informed Expectations

Given a state S, a collection of tasks T = (t1, ..., tn), and a plan π = (a1...am) solving

an HTN planning problem (S, T,D), we define informed expectations, the third form

of expectation, EXinf (T, S), and the focus of this paper. To define it, we first define

Result(T, S), the state resulting after applying tasks to states:

Case 1. If T = ∅, then Result(T, S) = S

Case 2. If T 6= ∅

Case 2.1 If t1 is primitive then:

Result(T, S) = Result((t2, ..., tn), Result(a1, S))

Case 2.2 If t1 is compound then:

Result(T, S) = Result((t2, .., tn), S ′) where S ′ = Result((r1, ..., rd), S) and (r1, ..., rd)

is the reduction of task t1 on state S generating π.

Let φ denote the state where every variable is undefined. Let ξ denote the expec-

tation, which is a placeholder for EXinf We can now define informed expectations,

EXinf (T, S) = Resultinf (T, φ, S), as follows:

48

www.manaraa.com

Case 1. If T = ∅, then Resultinf (T, ξ, S) = ξ

Case 2. If T 6= ∅

Case 2.1 If t1 is primitive then:

Resultinf (T, ξ, S) = Resultinf ((t2, ..., tn), ξ′, S ′), where ξ′ = (ξ . pre(a1)) .

eff (a1) and S ′ = Result(a1, S). Given two states A and B, A . B denotes the state

in which each variable v is instantiated as follows: (1) v is undefined if v is undefined

in A and B, or (2) v takes the non-undefined value c if v = c in B, or (3) v takes the

non-undefined value c if v = c in A and v is undefined in B.

Case 2.2 If t1 is compound then:

Resultinf (T, ξ, S) = Resultinf ((t2, ..., tn), ξ′, S ′),

where ξ′ = Resultinf ((r1, .., rd), ξ, S), S ′ = Result((r1, ..., rd), S)

and (r1, ..., rd) is a reduction of task t1 on state S.

EXinf (T, S) represents an intermediate point between checking the action’s ef-

fects and checking for a complete state after each action in the plan is executed. In

general, for the two cases above, ξ will have variables that are undefined whereas the

corresponding state S will have no undefined variables. An agent using informed ex-

pectations only needs to check in the environment for the values of those variables that

are not undefined. In contrast, an agent using state expectations must check the values

for all variables. EXinf (T, S) is a recursive definition and, hence, defines the expec-

tation not only for the top level tasks T but for any task sequence in the task hierarchy

decomposing T .

The pseudocode for calculating informed expectations is described in Algorithm 1.

For any task sequence (t1, ..., tn) occurring during the HTN planning process, ex stores

the expectations, including the expectation of the last task, tn, of that sequence. Our

49

www.manaraa.com

algorithm extends the SHOP planning algorithm (Nau et al., 1999). The extensions to

the SHOP algorithm presented here are underlined for easy reference. This algorithm

computes the following: (1) a plan π solving the HTN planning problem (S, T,D), (2)

a dictionary, ex, mapping for each task t its expectation ex[t], (3) another dictionary,

sub, mapping for a task t its children subtasks, sub[t].

The auxiliary procedure SEEK-EX is called with the HTN planning problem (S, T,D),

the plan π computed so far (initially empty) and the informed expectation exprev of

the previous action in the current plan (initially empty) (Lines 3 and 4). Because in-

formed expectations are cumulative, the planner must maintain the previous expectation

throughout the recursion.

If the first task t in T is primitive (Lines 6 and 7), then it finds an action q that

achieves t (Line 8). If this is the first action in the plan, then the preconditions of that

action are stored as the very first expectation (Line 10). This expectation is stored in

the dictionary with a key value of a special start symbol and not a task (Lines 9 and 10).

All other key values of the dictionary are task names.

Line 11 produces the informed expectation for the primitive task t. Since t is primi-

tive, it has no children (Line 12). The expectation for task t, ex[t] becomes the previous

expectation and it is then passed into the recursive call of SEEK-EX (Line 14).

Line 18 handles the case that t is not primitive, and therefore may have one or more

reductions for t in state S. There are two recursive calls. First, a call is made on the

reduction r; the resulting expectation is stored as the informed expectation of t (Line

20). The current plan, π′ is obtained by appending the subplan πt to the end of the

previous plan π (Line 21). The current state, S ′ is obtained by applying the subplan πt

to state S (Line 22). Second, a call is made on the remaining tasks R (Line 24). The

resulting expectation is the expectation for the last task, t′ in T .

50

www.manaraa.com

Algorithm 1 Informed Expectations (extensions to the SHOP algorithm are underlined)
1: Global ex, sub
2: procedure FIND-EX(S, T,D)
3: return SEEK-EX(S, T,D, (), ())
4: procedure SEEK-EX(S, T,D, π, exprev)
5: if T = nil then return ((),exprev)

6: t as the first task in T ; R = the remaining tasks
7: if t is primitive then
8: if there is an action q achieving t then
9: if this is the first action then

10: ex[start] = pre(q)

11: ex[t]← (exprev . pre(q)) . eff (q)

12: sub[t]← ()
13: π ← append(π, q)
14: return SEEK-EX(result(q, S), π, R,D, ex[t])
15: else
16: return Fail
17: else
18: for every reduction r of t in S do
19: sub[t]← r
20: (πt, ex[t])← SEEK-EX(S, r,D, (), exprev)
21: π′ ← append(π, πt)
22: S ′ ← result(πt, S)
23: t′ ← last task of T
24: (π, ex[t′])← SEEK-EX(S ′, R,D, π′, ex[t])
25: if π 6= Fail then
26: return (π, ex[t′])

27: return Fail

51

www.manaraa.com

4.2 Discussion

Over the last few years we have seen a significant increase in research and applications

of systems with increasing autonomous capabilities. As these systems become more

common, concerns have been raised about how we can design autonomous systems

that are robust. That is, a system that reliably operates within expected guidelines even

when acting in dynamic environments. Research about agent’s expectations can be

seen as a step towards addressing this difficult problem; reasoning about the agents’

own expectations enables agents to check if the expectations of the course of action

are currently met. Here we re-visit two kinds of expectations discussed in the GDA

literature: immediate and state expectations. We formally define and implement a third

kind, informed expectations. Informed expectations capture what is needed for plan

trajectory (unlike immediate expectations) while ignoring changes in the environment

irrelevant to the current plan (unlike an agent using state expectations). Our experiments

demonstrate improved performance for GDA agents using informed expectations on

two metrics: execution costs and percentage of execution failures shown in Section

9.2.1.

This work is related to plan repair, which aims at modifying the current plan when

changes in the environment make actions in the plan invalid (Van Der Krogt and De Weerdt,

2005). Plan repair has also been studied in the context of HTN planning (Warfield et al.,

2007). The main difference between plan repair and GDA is that in the latter the goals

might change whereas plan repairs stick with the same goals while searching for alter-

native plans.

Unlike STRIPS representations where the outcome of a plan is directly related to

whether the literals in the final state reached satisfy the goals, HTN representations

52

www.manaraa.com

must, in principle, consider if the pursued task is accomplished regardless of the lit-

erals in the state reached. This is due to the semantics of HTN planners where the

state that is reached is not necessarily linked to the task being accomplished. TMK

and TMKL2 have a similar characterization of expectations presented here but support

debugging and adaptation in the context of meta-reasoning (Murdock and Goel, 2008),

while GDA uses it for goal formulation. Informed expectations check literals in the

space by projecting the informed state across tasks at all levels of the HTN.

The notion of informed expectations is related to goal regression (Mitchell et al.,

1986). Goal regression is the process of finding the minimal set of literals in the initial

state required to generate a plan achieving some goals. This process traverses a plan to

collect all literals that are not added by actions in the plan. In contrast, in our work we

are identifying the literals in the final state that are expected to hold. The most important

difference, however, is that we are computing the expectations for tasks at all levels of

the HTN.

53

www.manaraa.com

Chapter 5

Informed Expectations for Sensing

In partially observable and dynamic environments it may not be obvious what the agent

needs to know in its current state to achieve its goals. In the previous chapter we de-

scribed informed expectations for dynamic environments, this work extends informed

expectations for environments that are not only dynamic but also partially observable.

We use partial observability as referring to both that the agent may not know the true

values of atoms in the state and that the agent must explore the state to see what ob-

jects it can use to complete its goals. In domains such as these, agents need to perform

sensing actions (including movement) to obtain the true value of atoms in the domain.

However, since the domain is dynamic, those truth values may change over time. We

assume there is a cost to sensing (unlimited sensing would remove partial observability

and in that case we can just apply the previously discussed informed expectations) and

show that by using informed expectations we achieve the lowest sensing costs of other

expectation techniques.

Previous work on GDA agents Molineaux et al. (2010); Weber et al. (2012); Jaidee

et al. (2011); Shivashankar et al. (2013) does not address sensing actions with associated

54

www.manaraa.com

costs. In contrast, researchers have long observed that acquiring knowledge about the

state of the world can be expensive both in terms of running time to complete the tasks

and in resource consumption (Knoblock, 1995). For example, virtual agents might

require to plan the information gathering tasks including which information sources to

access and what information to acquire, which in turn will enable the agent to identify

other information sources (Knoblock, 1996); physical agents may use sensors which

require power, time, and potentially other resources (Mei et al., 2005).

This extension of informed expectations integrates ideas of information-gathering

agents into the GDA framework. In particular, we present a new family of GDA agents

that adopt the convention of distinguishing between planning actions and sensing ac-

tions, the latter of which have associated costs. We investigate how different kinds of

expectations affect the performance of GDA agents in environments that are partially

observable and dynamic.

We evaluate agents where observability is limited in such a way that the agent cannot

generate a grounded plan because it does not know which future actions will be avail-

able until it explores more of the environment. Section 9.2.2 contains the experimental

evaluation and results.

5.1 Related Work

Deterministic (STRIPS) planning assumes that actions have a pre-determined outcome

(Fikes and Nilsson, 1971). The result of planning is a sequence of actions that enable

the agent to achieve its goals. A Markov Decision Process (MDP) is a frequently stud-

ied planning paradigm whereby actions have multiple outcomes (Howard, 1960). In

MDPs, solutions are found by iterating over the possible outcomes until a policy is gen-

55

www.manaraa.com

erated which indicates for every state that the agent might encounter, what action to take

that will enable the agent to achieve its goals. A Partial Observable Markov Decision

Process (POMDP) is an extension of MDP for planning when the states are partially

observable (Kaelbling et al., 1995, 1998). In POMDPs, solutions are found by iterating

over the possible states that the agent believes itself to be in and the possible outcomes

of the actions taken on those belief states until a policy is found over the belief states. In

GDA agents, goals may change while the agent is acting in the environment. Previous

GDA research has used both plans (i.e., sequences of actions, Molineaux et al. (2010)

and policies (Jaidee et al., 2012).

Research in GDA has resulted in techniques to learn GDA knowledge automatically;

this includes research to learn goals and goal formulation knowledge (Jaidee et al.,

2011) and learn explanations (Weber, 2012). Researchers have also explored applying

GDA for playing computer games (Weber et al., 2010; Dannenhauer and Muñoz-Avila,

2013), for conducting naval operations and for controlling robots (Roberts et al., 2014)

among others. Thus far, GDA work has not considered explicit models of the cost of

sensing actions; examining the state is assumed to have no cost for the agent. Our work

is the first to use GDA with an explicit model of partial observability that accounts for

the cost of sensing actions. Furthermore, current GDA research assumes that enough

information in the state is observable to plan ahead a sequence of grounded actions

to achieve the goals. In our work we drop this assumption presenting a model that

accounts for situations when such planning is not always possible (while at the same

time not precluding this possibility).

There is a long-standing tradition of interleaving planning and execution (Goldman

et al., 1996). Briefly, Sage was an early system interleaving planning and execution to

enable the system to further plan when possible while, in parallel, sensing actions are

56

www.manaraa.com

executed (Knoblock, 1995). This enables the agent to cope with information gather-

ing tasks including query execution for data integration (Ives et al., 1999). Interleav-

ing planning and execution has also been used for multi-agent systems architectures

(Paolucci et al., 1999). More recently, there has been a renewed call about the impor-

tance of interleaving planning and execution (Ghallab et al., 2014). In those works, the

agents gather information in order to achieve predefined goals. In contrast, GDA agents

might change its goals.

5.2 Problem Definition

We define the problem of sensing in a partially observable and dynamic environment

whereby a variety of goals can be pursued. First, if Q is the collection of all states

in the world, then a collection of atoms s is a partial state if there is a state q ∈ Q

such that s ⊆ q holds. The 6-tuple input to the guiding sensing problem is defined as

(S,Σ, s0, G, φg, c) and is composed of the following elements:

S: The set of all partial states; if Q is finite, then S is finite too. s0: An initial partial

state. G: A collection of goals.

Σ: Actions in the domain. Σ = Σplan ∪ Σsense, where Σplan are planned actions

in the domain (e.g., move the agent to a neighboring location from its current loca-

tion). An action a ∈ Σplan consists of the usual triple, (prec(a), a+, a−) indicating the

preconditions, positive effects and negative effects of a. Σsense consists of sensing ac-

tions; one, γτ , for every condition τ that may be satisfied in the environment. γτ returns

{true, false} depending if τ is a valid condition in the environment (e.g., checks if a

specific beacon is activated).

φg: A heuristic function, one for each goal g ∈ G. It maps for every state, the next

57

www.manaraa.com

action to take, φg : S → Σplan. The heuristic function φg can be seen as encoding a

strategy about how to achieve goal g. In our model the heuristic functions do not need

to provide ”hints” of actions to take that somehow circumvent the partial observability

in the domain. However, our model does not preclude that possibility: if a plan π to

achieve goal g is known, then the heuristic φg would simply pick the next action in π

from the current state. It also does not preclude the case where we have a policy (i.e., a

mapping from states to actions) indicating which action to take when visiting an state.

In such a case when the goal changes, the plan/policy must change. In our empirical

evaluation, we do not assume that we have knowledge about such plans/policies.

c: Sensing Cost Function, c : Σsense → R≥0. Returns a non-negative number for

each sensing action.

The guiding sensing problem is defined as follows: given a guiding sensing problem

(S,Σ, s0, G, φg, c), generate a sequence of actions π = (a1...am), each ak ∈ Σ, and a

sequence of partial states (s0...sm) such that:

1. If πplan = (ak1...akn) denotes the subsequence of all planning actions in π (i.e.,

each akj ∈ Σplan), then the preconditions of each akj were valid in the environ-

ment at the moment when akj was executed.

2. One or more goals g ∈ G hold in sm.

3. If πsense = (ak1...akz) denotes the subsequence of all sensing actions in π (i.e.,

each action in πsense is of the form γτ () for some condition τ), then the total

sensing cost C(π) =
∑n

i=1 c(aki) is minimal.

Condition 1 guarantees that the actions taken while the agent was acting in the envi-

ronment were sound. Condition 2 guarantees that at least one of the goals is achieved.

58

www.manaraa.com

This condition is compatible with the special case of oversubscription planning (Smith,

2004), where the agent tries to achieve the maximum number of goals. It is also con-

sistent with GDA where the agent chooses the goals to achieve as a result of situations

encountered while acting on the environment. Condition 3 represents an ideal condition

where the agent minimizes the cost of sensing while achieving its goals. In our work,

we explore a variety of criteria (see next section) that affects the overall costs of the

action trace pursued by the agent but our algorithms will provide no guarantees that

Condition 3 is met.

5.3 GDA and Expectations

GDA agents repeatedly perform the following four steps as described in the introduc-

tion. We walk through these steps again with an example in the Marsworld2 domain

example here:

(1) Discrepancy detection: after executing an action a, the agent compares the ob-

served state o after sensing and the agent’s expectation x (i.e., it tests whether any con-

straints are violated, corresponding to unexpected observations). In the marsworld2ew

domain an expectation is the atom activated(beacon5) and a discrepancy is the observed

contradicting atom deactivated(beacon5). If a discrepancy D is found (e.g., D = x \ o

is not empty), then the agent executes the following step.

(2) Explanation generation: Given an observed state o and a discrepancy D, this step

hypothesizes an explanation e causing D.

(3) Goal formulation: This step generates a goal g ∈ G in response to D, e, and o.

(4) Goal management: Given a set of existing/pending goals Ĝ ⊆ G (one of which

may be the focus of the current plan execution) and a new goal g ∈ G, this step may

59

www.manaraa.com

update Ĝ to create Ĝ′ (e.g., Ĝ′ = Ĝ ∪ {g}) and will select the next goal g′ ∈ Ĝ′ to

pursue.

The GDA cycle is triggered when discrepancies occur. In turn, discrepancies hinge

on the notion of an agent’s expectations. We explore 5 kinds of expectations from the lit-

erature (Muñoz-Avila et al., 2010a,b; Dannenhauer and Muñoz-Avila, 2015b; Mitchell

et al., 1986), adapted to consider the guiding sensing problem. We use the following

conventions: πprefix = (a1...an) is the sequence of actions executed so far, (s0...sn) are

the sequence of partial states the agent believes to have visited so far, and an+1 ∈ Σplan

is the next action to be executed.

1. No expectations: The agent performs sensing actions that are only related to the

preconditions of an+1 where an+1 ∈ Σplan. For every precondition τ ∈ an+1, the

agent performs the sensing action of γτ ().

2. Immediate expectations: The agent performs sensing actions for both the precon-

ditions and effects of an+1 where an+1 ∈ Σplan.

3. Eager expectations: The agent checks if the belief state sn is consistent with

the current observed state and if sn+1 is consistent with the state observed after

executing an+1 ∈ Σplan.

4. Informed expectations: Inf(πprefix, s0) move forward all valid conditions com-

puted so far in πprefix. Informed expectations are formally defined as follows:

Inf(πprefix, s0) = Inf(πprefix, s0, ∅)

• Inf((), s, cc) = cc.

• Inf((a), s, cc) = cc′ if (1) a ∈ Σplan and is applicable in s, then cc′ =

60

www.manaraa.com

(cc \ a−) ∪ a+, where a− are the negative effects from a and a+ are the

positive effects from a.

• Inf((akak+1...an), sk, cc) = Inf((ak+1...an), sk+1, Inf((ak), sk, cc)).

5. Goal-regression expectations: Given a plan suffix πsuffix = (ak+1...am) achiev-

ing a collection of goalsG from some state, goal regression expectations Regress(πsuffix, G)

is formally defined as follows:

• Regress((), cc) = cc.

• Regress((a), cc) = (cc \ a+) ∪ precs(a)), where precs(a) are the precon-

ditions of a.

• Regress((ak+1...am), cc) = Regress((ak+1...am−1), Regress((am), cc)).

Checking for no expectations is typical of systems performing deliberative planning,

where the agent’s actions are not executed in the environment and therefore cannot fail.

In a dynamic environment, actions may become invalid and hence an agent using no

expectations is prone to fail to achieve its goals. Immediate expectations is an improve-

ment in that the agent checks if the conditions for the next action to be applied hold in

the observed state. But if earlier conditions are no longer valid, then the agent will be

unaware (e.g., a beacon needed to achieve a goal condition has become deactivated).

Hence, immediate expectations is also prone to fail to fulfill its goals.

Eager expectations check that all conditions in the agent’s belief state are satisfied

at every iteration. Hence, they are an improvement over the previous two kinds of ex-

pectations in that checking for eager expectations guarantees that if these conditions

are valid, the plan is still valid (e.g., it will continue checking if a previously activated

beacon, needed to achieve a goal, is still active). A drawback is that it may incur high

61

www.manaraa.com

sensing costs; it will also check for conditions that are not relevant for the current plan

(e.g., any atom in the state, even if irrelevant to the current goal, will be checked and

the agent will incur in the corresponding sensing costs). In contrast, goal regression

expectations are an improvement in that they guarantee that the expectations computed,

Regress(πsuffix, G), are minimal. That is, if any condition in Regress(πsuffix, G) is

removed then some precondition in the suffix plan πsuffix is no longer applicable and

therefore G cannot be fulfilled. The main drawback is that some of these conditions

might become irrelevant if the agent needs to replan which is prone to occur in dy-

namic environments. Informed expectations addresses this limitation in that they move

forward all conditions validated by the plan, πprefix, executed so far. We state the

following property implying advantages and disadvantages of informed expectations

over goal regression expectations: Let s0 be a state, G a collection of goals and a plan

π = πprefix • πsuffix achieving G from s0 (where • is the concatenation of the two

plans). Under these conditions, if Inf(πpreffix, s0) are applicable in a state sk, then

Regress(πsuffix, G) is also applicable in sk but not the other way around.

This follows from the fact that Regress(πsuffix, G) computes the minimal condi-

tions and our assumption that πprefix • πsuffix achieves G from a state s0. This result

means that an agent checking for Inf(πprefix, s0) will check for unnecessary conditions

assuming that there is no need to replan after executing πprefix. On the other hand,

if there is a need to replan to achieve the same goals G, then the informed expecta-

tions, Inf(πprefix, s0), will compute the needed conditions regardless of how the plan

is completed. In contrast, Regress(πsuffix, G) conditions might no longer be valid.

62

www.manaraa.com

5.4 Formalism

Algorithm 1 shows the pseudo-code for our agent that is operating in a partially ob-

servable and dynamic environment. The main algorithm GDA starts on Line 18. The

algorithm uses the following variables, initialized in Line 2: a plan π (initially empty),

a collection of states (initially consisting of the starting partial state s0), a default goal,

g, and a collection of goals that the agent is currently pursuing Ĝ. It also uses a global

variable, G with all potential goals that the agent might pursue. The algorithm also uses

an expectation function, X(s, π), as defined in the previous section (excluding goal

regression expectations).

The algorithm returns the pair (π, Ŝ), where π is the trace of all planning and sensing

actions executed and Ŝ all states the agent believes it visited (depending on the kind of

Algorithm 2

1: Global Variables Ŝ,Σ, s0, Ĝ,G, φg, X : S × Π→ S

2: π ← (); Ŝ ← (s0); g ← defaultGoal; Ĝ← {g}
3: return GDA()
4:
5: procedure CHECK(x, s, π)
6: D ← ∅; s′ ← s . initialization
7: for τ ∈ x do
8: cond← γτ () . Sensing Action
9: if (positive(τ) and not(cond)) or (negative(τ) and cond) then .

Discrepancy!
10: D ← D • (τ))
11: π ← π • γτ ()
12: if positive(cond) then
13: s′ ← s′ \ {τ} . τ is not valid in s
14: if negative(cond) then
15: s′ ← s′ ∪ {τ} . τ is valid in s
16: return D
17:

63

www.manaraa.com

18: procedure GDA()
19: s← lastState(Ŝ)
20: if terminationCondition(Ĝ, s, Ŝ, π) then
21: return (π, Ŝ)

22: a← φg(s) . selects applicable action
23: D ← check(precs(a), s, π)
24: if D == ∅ then
25: execute(a)
26: s← apply(a, s)
27: π ← π • (a)
28: D ← check(X(s, π), s, π)
29: if D == ∅ then
30: Ŝ ← Ŝ • (s)
31: return GDA()
32: else Ŝ ← Ŝ • (s)

33: else replace(Ŝ, s)
34: E ← explain(D, s) . There was a discrepancy
35: Ĝ←formulate new goals(G, Ĝ,D,E, s)
36: g ←goal selection(Ĝ, s)
37: return GDA()
38:
39: procedure TERMINATIONCONDITION(Ĝ, s, Ŝ, π)
40: g′ ← goalsSatisfied(s, Ĝ)
41: if g′ 6= ∅ then
42: if check(g′, s, π) then
43: return true
44: else return false
45: else return false

64

www.manaraa.com

expectations used, the agent may not have checked if every condition in the state is valid

in the environment). The procedure begins by taking the last partial state, s, believed

to be visited (Line 19). It first checks if the termination conditions are met in s. The

terminationCondition procedure is detailed on Line 39 and is explained later. If the

termination condition is not met, then the agent selects an applicable action a (based

on the belief state s) to execute using the heuristic for the current goal (Line 22). It

checks if the preconditions of a are valid in the environment by performing sensing

actions (Line 23). The procedure check is detailed in Line 5. We will explain it later,

but briefly, it will log in π any sensing action performed and it will modify s based on

the discrepancies D it detected. If the preconditions are satisfied in the environment

(Line 24), then the action is executed (Line 25), the belief state is moved forward by

applying action a on s (Line 26). Action a is added into π (Line 27). Afterwards, it

checks if the expectations (Line 28) are met in the environment (Line 29). If so, s is

added into Ŝ and calls GDA() recursively (Lines 30-31). Otherwise, it adds s into Ŝ

(Line 32; the procedure check updates s whenever there is a discrepancy).

If the preconditions are not satisfied, the last state in Ŝ is replaced with the updated

state s (Line 33; calling the check function in Line 23 changes s based on the discrepan-

cies detected). If there is a discrepancy either in the preconditions or in the expectations,

Line 34 is reached. In it, the algorithm generates an explanation E for the discrepancy,

formulates new goals Ĝ to achieve, selects a new goal g to pursue among those in Ĝ

and calls GDA recursively (Lines 35-37).

We now discuss the auxiliary procedures check and terminationCondition. The

check procedure (Line 5), receives as parameters the conditions x to be checked, the

belief state s and the actions executed in the environment so far π. It checks for every

atom τ in x if τ is sensed in the state (Line 8) while accounting for the fact if it is a pos-

65

www.manaraa.com

itive or negative condition (Line 9). D maintains all discrepancies found (Lines 6 and

10). π is updated with any sensing actions performed (Line 11). The state is updated

when there is a discrepancy (Lines 12-15). The procedure returns the discrepancies

(Line 16). The auxiliary procedure terminationCondition (Lines 39-45) checks if the

current goals g′ (with g′ ⊆ Ĝ) are (1) satisfied in the belief state s (lines 40-41) and (2)

satisfied in the environment (Line 42).

We present a formulation of the guiding sensing problem where sensing actions

have associated costs for environments that are partially observable. Our formulation is

amenable to, both, environments where GDA agents can plan ahead (e.g., as a sequence

of grounded actions) and environments where this is not possible. We analyze trade-offs

between five forms of expectations (i.e., none, immediate, eager, informed, and goal re-

gression) used by GDA agents when dealing with dynamic environments. We presented

an algorithm for a GDA agent operating in both partially observable and dynamic en-

vironments approximating a solution to the guiding sensing problem when planning

ahead as a sequence of grounded actions is not possible. We evaluated our algorithm in

two simulated environments. From this evaluation, we see that informed expectations

performs the best among the four expectations (i.e., none, immediate, eager, informed)

and using complete expectations (i.e., when full observability is enabled); informed ex-

pectations has less sensing costs compared to other expectations that achieve all goals.

66

www.manaraa.com

Chapter 6

High Level Expectations in Complex

Domains

A shortcoming in the current state of the art on GDA research is the lack of structured,

high-level representations in their formalisms. Most rely on STRIPS representations.

For example, the agents’ expectations are defined as either specific states (i.e., collection

of atoms) or specific atoms in the state (e.g., after executing the action move(x,y) the

agent expects the atom location(y) to be in the state) expected to be true. Goals are

desired states to be reached in the state or desired atoms in the state (e.g., the agent is at

a certain location).

To address this shortcoming we introduce high-level ontological concepts to be used

as expectations. Using an ontology with high-level concepts enhances the representa-

tion of GDA elements whereby these concepts can be directly related, and defined, in

terms of low-level chunks of information. A motivation for using ontologies is that

STRIPS representations are too limited to represent events that happen in the real world

(or complex domains), more structured representations are needed in order to capture

67

www.manaraa.com

more complex constraints (Gil and Blythe, 2000).

Drawbacks to using ontologies include the knowledge engineering effort required

for construction and maintenance of the ontology as well as the running time per-

formance during reasoning. In past years, taking an ontological approach may have

seemed intractable for systems acting in real-time domains with large state spaces. With

the growth of the semantic web, description logics, and fast reasoners, ontologies may

begin to become viable. As demonstrated in this work, we are reaching a point where

ontologies are useful for fast-acting systems such as agents that play Real-Time Strat-

egy games. Specifically, we investigate the use of ontologies for a GDA agent playing

the Real-Time Strategy game Starcraft, in two agents we call LUiGi and LUiGi-H .

Both LUiGi (Dannenhauer and Muñoz-Avila, 2013) and LUiGi-H ((Dannenhauer

and Muñoz-Avila, 2015a); discussed in more detail in Chapter 7) maintain an ontology

that contain low-level facts of the environment (such as the x and y coordinates of each

unit) as well as high-level concepts that can be inferred from low-level facts. One such

high-level concept is the notion of controlling a region (a bounded area of the map).

A player controls a region provided two conditions hold. First, the player must have

at least one unit in that region. Second, the player must own all units in that region.

Regions in which both players have units are considered contested. A region can only

be one of unknown, contested, or controlled.

Once we have these concepts of unknown, controlled, and contested regions, we

can use them as rich expectations. For example, in the beginning of the game when we

are constructing the buildings and producing our first army, we expect that we control

our region. If this expectation is violated (producing a discrepancy), it means that the

enemy has a presence in our base early in the game. When this happens LUiGi explains

the discrepancy and pursues a goal focused on defending its base region instead of

68

www.manaraa.com

building a considerable army. In this situation, some possible explanations include an

immediate incoming rush attack or an attempt to distract our worker units. By having

a concise expectation and corresponding discrepancy representing that we no longer

have complete control of our base region, we can detect this change and then let the rest

of the GDA cycle explain and respond. When the expectation “I control my starting

region” fails during an enemy rush attack, the agent can choose a new goal to quickly

defend their region. This is a higher reasoning level than many previous Starcraft and

Wargus (Wargus is an open source version of Warcraft, another popular Real-Time

Strategy game) bots who simply focus on optimizing micro-unit attacks. While micro-

management is important, without high-level reasoning, bots are still at a disadvantage

to humans. One reason for this that has been pointed out by domain experts is that

the automated players are still weak in reasoning with high-level strategies (Churchill,

2013).

6.1 Ontologies for Expectations and Explanations

One of the main benefits of using an ontology with GDA is the ability to provide formal

definitions of the different elements of a GDA system. The ontology used here chooses

facts as its representation of atoms, where facts are represented as triples 〈subject, pred-

icate, object〉. A fact can be an initial fact (e.g., 〈unit5, hasPosition, (5,6)〉 which is

directly observable) or an inferred fact (e.g., 〈player1, hasPresenceIn, region3〉). By us-

ing a semantic web ontology, that abides by the open-world assumption, it is technically

not possible to infer that a region is controlled by a player, unless full knowledge of the

game is available. Starcraft is one such domain that intuitively seems natural to abide

by the open world assumption because of fog of war. However, we can assume local

69

www.manaraa.com

closed world for the areas that are within visual range of our own units. For example, if

a region is under visibility of our units and there are no enemy units in that region, we

can infer the region is not contested, and therefore we can label the region as controlled.

Similarly, if none of our units are in a region, then we can infer the label of unknown

for that region.

The following are formal definitions for a GDA agent using a semantic web ontol-

ogy:

• State S: collection of facts

• Inferred State Si: S ∪ { facts inferred from reasoning over the state with the

ontology }

• Goal g: a desired fact g ∈ Si

• Expectation x: one or more facts contained within the Si associated with some

action. We distinguish between primitive expectations, xp, and compound ex-

pectations, xc. xp is a primitive expectation if xp ∈ S and xc is a compound

expectation if xc ∈ (Si − S). (Si − S) denotes the set difference of Si and

S, which is the collection of facts that are strictly inferred. In other words, a

compound expectation xc is an inferred fact.

• Discrepancy d: Given an inferred state Si and an expectation, x, a discrepancy d

is defined as:

1. d = x if x 6∈ Si, or

2. d = {x} ∪ Si if {x} ∪ Si is inconsistent with the ontology

70

www.manaraa.com

• Explanation e: Explanations are directly linked to an expectation. For primitive

expectations, such as xp = (player1, hasUnit, unit5) the explanation is sim-

ply the negation of the expectation when that expectation is not met: ¬xp. For

compound expectations, xc (e.g., expectations that are the consequences of rules

or facts that are inferred from description logic axioms), the explanation is the

trace of the facts that lead up to the relevant rules and/or axioms that cause the

inconsistency.

6.1.1 Example of Explanation

Assume we have the following description logic axiom (6.1) and semantic web rules

(6.2) and (6.3):

KnownRegion ≡ DisjointUnionOf(ContestedRegion, ControlledRegion)

(6.1)

The class KnownRegion is equivalent to the disjoint union of the classes

ContestedRegion and ControlledRegion. This axiom allows the ontology

to infer that if an individual is an instance of ContestedRegion it cannot

be an instance of ControlledRegion, and vice-versa. This also encodes the

relationship that ContestedRegion and ControlledRegion are subclasses of

KnownRegion.

71

www.manaraa.com

Player(?p)∧Region(?r)∧Unit(?u)∧ isOwnedBy(?u, ?p)∧ isInRegion(?u, ?r)

→ hasPresenceIn(?p, ?r) (6.2)

With this rule, the ontology reasoner can infer that a player has a presence

in a region if that player owns a unit that is located in that region.

Player(?p1) ∧ Player(?p2) ∧DifferentFrom(?p1, ?p2) ∧Region(?r) ∧

hasPresenceIn(?p1, ?r) ∧ hasPresenceIn(?p2, ?r)→ ContestedRegion(?r)

(6.3)

This rule allows the inference of a region to be an instance of ContestedRe-

gion if two different players each have a presence in that region.

Figure 6.1 shows an example where the unsatisfied expectation is 〈player0, control-

sRegion, regionA〉 in which the explanation is that regionA is contested. The explana-

tion trace begins with the primitive facts of each player owning one or more units and

those units’ being located in regionA. Using rule (6.2), the next level of the tree is the in-

ferred facts: 〈player0, hasPresenceIn, regionA〉 and 〈player1, hasPresenceIn, regionA〉.

Now using rule (6.3) with the second level inferred facts, we infer that 〈regionA, in-

stanceOf, ContestedRegion〉. From this level, the expectation 〈player0, controlsRegion,

72

www.manaraa.com

Figure 6.1: Inconsistency Explanation Trace

regionA〉 conflicts with the inferred fact 〈regionA, instanceOf, ContestedRegion〉. Ax-

iom (6.1) produces an inconsistency because a region can not be both a contested region

and a controlled region (disjointUnionOf). The inconsistency produced by inserting the

expectation into the ontology and subsequently reasoning over the ontology is how the

agent knows an expectation has been violated.

In this example, the explanation was that the region was contested, and the trace

both provides an explanation and shows how the ontology reasoner is able to produce

an inconsistency. An inconsistency is the result of the unmet compound expectation

〈player0, controlsRegion, regionA〉. Given the explanation, a viable goal to pursue next

would be to build a stronger group of units to attack the enemy units in regionA. As

discussed before, an alternative explanation could have been that the player does not

control the region because it did not have any of its units in the region. In that case,

the inconsistency in the ontology would result from regionA being labeled as Unknown

73

www.manaraa.com

and a viable goal would be to travel to the region along a different path or a different

medium (flying vs. ground units).

High-level concepts with an ontology provide an abstraction over low-level facts

and conditional relationships among the facts. For example, we can either have a group

of facts such as 〈player0, hasUnit, unit1〉, 〈player0, hasUnit, unit2〉, 〈unit1, isAtLoca-

tion, (x1,y1)〉, 〈unit2, isAtLocation, (x2,y2)〉, 〈player1, hasUnit, unit3〉, 〈unit3, isAt-

Location, (x3,y3)〉 accompanied with the conditional relationships equivalent to the

description logic rule (1) and rules (2) and (3) or we can have the high-level concept

Contested Region accompanied with the ontology. The conditional relationships are

needed for both being able to count how many units each of the players has in the re-

gion, and being able to infer what region each unit is located in based on its (x,y). Such

numerical conditions cannot be represented in STRIPS. The explanation trace shows

how the concepts are built from the low-level facts and the complex (often hierarchi-

cal) relationships among them (via description logic axioms and rules). Even if such

an equivalent representation would be possible using STRIPS, representing such hierar-

chical knowledge in STRIPS could require a large number of in STRIPS atoms, thereby

making reasoning on these domains very inefficient (Lotem and Nau, 2000).

The explanation trace makes apparent the conditional relationship details and facts

of which the high level expectation (i.e., ContestedRegion) is composed. This allows

the root causes of the unmet expectation to be identified. The benefit is richer expecta-

tions and explanations being able to express not only atoms (facts) but conditions and

relations on those atoms as well.

74

www.manaraa.com

6.2 System Details for LUiGi & LUiGi-H

LUiGi is implemented in two components, a bot and a GDA component, shown in

Figure 6.2. The bot component interfaces directly with the Starcraft game engine to

play the game. The GDA component runs as a separate program, and connects to the bot

component via a TCP/IP connection with both the bot and GDA component running on

the same computer. The bot is responsible for building up an initial base and executing

tasks sent to it by the GDA component. The bot component contains knowledge of

how to execute individual plan steps and knowledge of when a task has finished so

that it can request the next plan step from the GDA component. During gameplay the

bot dumps all of its game state data every n frames (the evaluation scenarios in section

9.2.3 use n = 20), making it available for the GDA component to use during ontological

reasoning.

The bot component is implemented in a C++ DLL file that is loaded into Starcraft

and the GDA component is implemented in a Java standalone application. Running the

reasoner, Pellet (Sirin et al., 2007), over the ontology takes on average between 1-2 sec-

onds. Such an amount of time would normally be unacceptable for micro-management

strategies controlling individual units in battle, but for more general strategies, such

as what units to produce next and how to attack the enemy, the following scenarios

demonstrated that this amount of time is acceptable when played at the speed setting

used in human vs. human tournaments. This is because executing a strategy involv-

ing unit production and movement takes anywhere from 20 seconds to minutes in these

scenarios.

LUiGi (and LUiGi-H) is composed of two major components, the controller and

the bot. The controller handles the goal reasoning processes while the bot interfaces

75

www.manaraa.com

with the game directly. The controller and bot operate separately from each other, and

communicate via a socket and file system. There are two methods of data transfer

between the controller and the bot. First, every n frames the ”bot” dumps all visible

gamestate data to the controller via a file (visible refers to the knowledge that a human

player would have access to; the bot does not have global knowledge; the bot is bound

by fog of war just as is a human player). The controller then uses this data to populate

the semantic web ontology described previously, in which to reason about the game

to infer more abstract conclusions. The other method of data transfer is the controller

sending messages to the bot which happens via a socket. Both the bot and controller run

as completely different processes, use their own memory, and are written in different

languages (bot is c++ and controller is java).

Controller

GDA Cycle

Goal
Manager

Discrepancy
Detector

Explanation
Generator

Goal
Formulator

Planner

Ontology

Starcraft

Bot

Plan
Step
Executor

Plan
Step
Listener

Game
State
Dumper

File System

Pellet
Reasoner Ontology

TCP/IP Socket

Case
Base

Planning
Server

Figure 6.2: LUiGi-H Overview

The controller’s perspective of the game is different than the bot’s in a few ways.

76

www.manaraa.com

The controller’s game state data is only updated when the Pellet reasoner finishes. The

Pellet reasoner is one of a few easily available reasoners for semantic web ontologies.

However, the controller’s game state data includes more abstract notions such as “I con-

trol region x right now”. The controller also knows all current actions being executed.

As a result, the controller has an overall view of the match but at the loss of some

minute details, such as the exact movements of every unit at every frame of the game.

This level of detailed information is perceived by the bot but at cost of only having a

narrow, instant view of the game. The bot receives actions from the controller, it only

receives a single action per plan at a time (when that action finishes, successfully or

not, the bot requests the next action of the plan). The bot can execute multiple actions

together independently, without knowing which action is going to come next. If the

controller decides an action should be aborted while the bot is executing it, it sends a

special message to the bot instructing it to stop executing that action. Example actions

might be ”Produce 3 Seige Tanks” or ”Move units 53, 55, and 56 to region4”.

6.3 Discussion

The results of LUiGi demonstrate the capability of using an ontology within discrepancy

detection and are shown in section 9.2.3. By using an ontology, more general planning

actions like ”produce units”, ”move units”, ”attack region”, ”defend region”, etc, can

be defined with atomic facts as preconditions and effects, like STRIPS operators. The

ontology we used is described in Appendix ??. For example, ”produce units” can have

a single high level fact (compound expectation) of ”I control my base region” using the

controlRegion class, as a precondition. Similarly, ”attack region” can have a single high

level fact of ”controlRegion” as an effect. Wide variations can exist in units’ specific x,y

77

www.manaraa.com

coordinates, number of troops remaining, etc. and still be useful (because of reasoning

with the ontology) an effect of the planning action can be represented as a single high

level fact. Therefore, such use of an ontology described here enables STRIPS like

planning actions with preconditions and effects at a high level to be grounded in a

complex domain like Starcraft, where many different game states could mean an action

failed or succeeded. As such, the kinds of expectations mentioned in related works,

such as using a single entire state as an expectation for the result of an action, would

not enable this kind of high level strategic planning.

78

www.manaraa.com

Chapter 7

A Hierarchical Model for GDA

7.1 LUiGi-H

LUiGi-H is an extension of LUiGi that uses hierarchical plans and hierarchical expecta-

tions. LUiGi-H uses Case-based Reasoning for its approach to plans (using a case-base

of plans). Case-based reasoning (CBR) has been shown to be an effective method in

GDA research. CBR alleviates the knowledge engineering effort of GDA agents by

enabling the use of episodic knowledge about previous problem-solving experiences.

In previous GDA studies, CBR has been used to represent knowledge about the plans,

expectations, explanations and new goals (e.g..,(Dannenhauer and Muñoz-Avila, 2013;

Jaidee and Muñoz-Avila, 2013; Weber, 2012)). A common trait of these works is a

plain (non-hierarchical) representation for these elements.

LUiGi-H uses episodic GDA knowledge in the form of hierarchical plans that reason

on stratified expectations and explanations modeled with ontologies (as described in

Chapter 6). Hierarchical representations enable modeling of stronger concepts thereby

facilitating reasoning of GDA elements beyond object-level problem solving strategies

79

www.manaraa.com

on top of the usual (plain) plan representations.

Crucially, both LUiGi-H and its baseline LUiGi include the same primitive plans.

That is, they have access to the same space of sequences of actions that define an auto-

mated player’s behavior. Hence, any performance difference between the two is due to

the enhanced reasoning capabilities; not the capability of one performing actions that

the other one could not. For planning from scratch, HTN planning has been shown to

be capable of expressing strategies that cannot be expressed in STRIPS planning (Erol

et al., 1994). But in this work, plans are not generated from scratch (our systems don’t

even assume STRIPS operators); instead, plans are retrieved from a case library (those

expressiveness results do not apply here).

It is expected that LUiGi-H will require increased computation time due to higher

level expectations. We test the performance of both LUiGi-H and LUiGi on the

real-time strategy game: Starcraft. Hence, both systems experience a disadvantage

if the computation time during reasoning (i.e., planning, discrepancy detection, goal-

selection, etc.) is too large. Increased computation time manifests as a delay in the

issuing of macro-level strategy (i.e., changing the current plan) to the game-interfacing

component of the agent.

7.2 Example

Figure 7.1 shows a hierarchical plan or h-plan used by LUiGi-H . This plan, and every

plan in the case base, are composed of the primitive actions found in Table 7.1 at the

lowest level of the h-plan (we refer to the lowest level as the 0-level plan). The h-

plan achieves the Attack Ground Surround task. For visualization purposes, in Figure

7.2, we divide the h-plan into two bubbles A and B. Bubble A achieves the two subtasks

80

www.manaraa.com

Figure 7.1: High Level Plan: Attack-
GroundSurround Figure 7.2: AttackGroundSurround on map

Volcanis

Attack Ground Direct (these are the two overlapping boxes) while Bubble B achieves the

Attack Units Direct task. For the sake of simplicity we don’t show the actual machine-

understandable representation of the tasks. In the representation, the two Attack Ground

Direct tasks would only differ on the parameters (one is attacking region A while the

other one is attacking region B as illustrated in Figure 7.2).

Bubble A contains the two Attack Ground Direct tasks, each of which is composed

of the actions: Produce Units, Move Units, and Attack Units. Bubble B contains the

task Attack Units Direct which is composed of the actions: Move Units, Attack Units.

This h-plan generates an Attack Ground Surround plan for each region surrounding

the enemy base. In the example on the map shown in Figure 2, this happens to be

two regions adjacent to the enemy base, therefore the plan contains two Attack Ground

Direct that are executed concurrently.

Once the execution of both Attack Ground Direct tasks are completed, the agent’s

units will be in regions adjacent to the enemy base. At this point, the next task Attack

81

www.manaraa.com

Units Direct is executed, which moves the units into the enemy base and attacks. Rea-

soning using a more abstract plan such as this one requires representing the notion of

surrounding. This is only possible because of LUiGi-H ’s use rich expectations. Specifi-

cally, the expectation labeled E1-0 in Figure 7.1 represents the condition that all regions

that were attacked are controlled by the player attacking (Table 7.2). In the ontology,

the explicit notion of Region Surrounded can be inferred for a region if all of that re-

gion’s adjacent regions are controlled by the agent (represented by Control Region). In

this example there are only two Attack Ground Direct because there are only two ad-

jacent regions to the enemy base). In Figure 7.1 each bubble contains the expectation

for its corresponding task. For the primitive tasks or actions, the expectations are as

shown in Table 1. For the expectations of tasks at higher levels in the plan, such as for

Attack Ground Direct, the expectation indicates that our units are successfully located

in regions adjacent to the enemy base. Only after this expectation is met, then the agent

proceeds to Attack Units Direct task (denoted by B in Figure 7.1).

Action Pre-Expectations Post-Expectations
Produce Units 1. Control Home Base 1. Our player has the given

units requested
Move Units 1. Control Home Base 1. Our units are within a

given radius of the destination
Attack Units None 1. We control the given re-

gion
Attack Worker
Units

None 1. We control the given re-
gion

Table 7.1: Primitive Actions and Corresponding Expectations

82

www.manaraa.com

Expectation Description
E1-0 Control all of the regions from Attack Ground Direct
E1-1 Control region from Attack Direct
E2-0 Control same region as in E1-1

Table 7.2: High Level Expectations used in Attack Ground Surround

7.3 GDA in LUiGi-H

These four steps of the GDA process are shown in LUiGi-H in Figure 6.2. Discrepancy

detection plays an important role as the GDA cycle will not choose a new goal unless

an anomaly occurs, and the first part of the process is identifying such an anomaly. The

baseline LUiGi system solved the problem of mapping expectations to primitive plan

action such as Produce Units, Move Units, and Attack Units by using an ontology.

The crucial difference between LUiGi and LUiGi-H is that LUiGi performs the

GDA cycle on level-0 plans. That, is on the primitive tasks or actions such as Produce

Units and their expectations (e.g., Have Units). In contrast, LUiGi-H reasons on expec-

tations at all echelons of the hierarchy. The next sections describe details of the inner

workings of LUiGi-H .

7.4 Representation Formalism and Semantics of h-plans

LUiGi-H maintains a library of h-plans. h-plans have a hierarchical structure akin to

plans used in hierarchical task network (HTN) planning but, unlike plans in HTN plan-

ning, h-plans are annotated with their expectations. In HTN planning only the concrete

plan or level-0 plan (i.e., the plan at the bottom of the hierarchy) has expectations as

determined by the actions’ effects. This tradition is maintained by existing goal-driven

83

www.manaraa.com

autonomy systems that use HTN planners. For example, Muñoz-Avila et al. (2010a)

uses the actions’ semantics of the level-0 plans to check if the plans’ expectations are

met but does not check the upper layers. LUiGi-H is the first goal-driven autonomy sys-

tem to combine expectations of higher echelons of a hierarchical plan and case-based

reasoning.

These h-plans encode the strategies that LUiGi-H pursues (e.g., the one shown in

Figure 1). Each case contains one such h-plan. We don’t assume the general knowledge

to be given to generate HTN plans from scratch. Instead, we assume a CBR solution,

whereby these h-plans have been captured in the case library. For example, they are

provided by an expert as episodic knowledge. This raises the question about how we

ensure the semantics of the plans are met; HTN planners such as SHOP guarantee that

HTN plans correctly solve the planning problems but require the knowledge engineer

to provide the domain knowledge indicating how and when to decompose tasks into

subtasks (i.e., methods). In addition, the STRIPS operators must be provided. In our

work, we assume that the semantics of the plans are provided in the form of expecta-

tions for each of the levels in the h-plan and an ontology Ω that is used to define these

expectations.

We define a task to be a symbolic description of an activity that needs to be per-

formed. We define an action or primitive task to be a code call to some external pro-

cedure. This enable us to implement actions such as “scorched earth retreat U to Y ”

(telling unit U to retreat to location Y while destroying any buildings or units along the

way) and the code call is implemented by a complex procedure that achieves this action

while encoding possible situations that might occur without worrying about having to

declare each action’s expectations as (preconditions, effects) pairs. This flexibility is

needed for constructing complex agents (e.g., an Starcraft automated player) where a

84

www.manaraa.com

software library is provided with such code calls but it would be time costly and perhaps

unfeasible to declare each procedure in such library as an STRIPS operator. We define a

compound task as a task that it is not defined through a code call (e.g., compound tasks

are decomposed into other tasks, each of which can be compound or primitive).

Formally, an h-plan is defined recursively as follows.

Base case. A level-0 plan π0 consisting of a sequence of primitive tasks. Each

primitive task in the level-0 plan is annotated with an expectation. Example: In Figure

7.1 the level-0 plan consists of 8 actions: the produce, move, attack sequence is repeated

twice (but with different parameters; parameters are not shown for simplicity) followed

by the move and attack actions. Each task (shown as a rectangle) has an expectation

(shown as an ellipse).

The base case ensures that the bottom level of the hierarchy consists exclusively of

primitive tasks and hence can be executed.

Recursive case Given a plan πk of level k (with k ≥ 0), a level−k + 1 plan, πk+1,

for pik consists of a sequence πk+1 of tasks such for each task t in πk+1 either:

(d1) t is a task in πk, or

(d2) t is decomposed into a subsequence t1...tm of tasks in πk. Example: In Figure

1, the task Attack Ground Direct is decomposed into the produce, move, attack primitive

tasks.

Conditions (d1) and (d2) ensure that each task t in level k + 1 either also occurs in

level k or it is decomposed into subtasks at level k.

Finally, we require the each task t in the πk+1 plan to be annotated with an expecta-

tion et such that:

(e1) if t meets condition (d1) above, then t has the same expectation et for both πk

and πk+1.

85

www.manaraa.com

(e2) if t meets condition (d2) above, then t is annotated with an expectation et such

that et |=Ω em, where em is the expectation for tm. That is, em can be derived from

et using the ontology Ω or loosely speaking, et is a more general condition that em.

Example: The condition control region can be derived from condition E1-0 (Table 7.2).

An h-plan is a collection π0, π1, ..., πn such that for all k with (n−1) ≥ k ≥ 1, then

πk+1 is a plan of level (k+ 1) for πk. Example: the plan in Figure 1 consists of 3 levels.

The level-0 plan consists of 8 primitive tasks starting with produce units. The level-1

plan consists of 3 compound tasks: Attack ground direct (twice) and attack unit direct.

The level-2 plan consists of a single compound task: Attack Ground surround.

A case library consists of a collection hp1, hp2, ..., hpm where each hpk is an h-plan.

GDA with h-plans. Because LUiGi-H uses h-plans the GDA cycle is adjusted as

follows: discrepancies might occur at any level of the hierarchy of the h-plan. Because

each task t in the h-plan has an expectation et, then the discrepancy might occur at any

level-k plan. Thus the cycle might result in a new task at any level k. This is in contrast

to systems like HTNbots-GDA (Muñoz-Avila et al., 2010a) where discrepancies can

only occur at level-0 plans. When a discrepancy occurs for a task t in a level k-plan,

an explanation is generated for that discrepancy, and a new goal is generated. This new

goal repairs the plan by suggesting a new task repairing t while the rest of the k-level

plan remains the same. At the top level, say n, this could mean retrieving a different

h-plan. This provides flexibility to do local repairs (e.g., if unit is destroyed, send a

replacement unit) or changing the h-plan completely.

Execution of level-0 plans The execution procedure works as follows: each action

ti in the level-0 plan is considered for execution in the order that it appears in the

plan. Before executing an action the system checks if the action requires resources

from previous actions. If so it will only execute that action if those previous actions’

86

www.manaraa.com

execution is completed. For example, for the level-0 plan in Figure 1, the plan will

begin executing Produce Units but not Move Units since they share the same resource:

the units that the former produce are used by the latter. The second Produce Units

action will start if it has more than one fabric. Otherwise, it will need to wait until the

first Produce Units is completed. The other levels of the h-plan are taken into account

when executing the level-0 plan. For example, the action Move Units in the portion B

of the plan will not be executed until all actions in the portion A are completed because

the compound task Attack Units Direct occurs after the compound task Attack Ground

Direct. As a result of this simple mechanism, some actions will be executed in parallel

while still committing to the total order of the h-plan.

7.5 Basic Overview of LUiGi-H ’s Components

Here we give a brief overview of each component; we also go into more detail for the

Planner in Section 7.5.1. The ontology is the same ontology as described in Chapter 6.

The Planner. As explained in Section 7.5.1, an expert-authored case base is com-

posed of h-plans that encode high-level strategies. Actions are parametrized, for exam-

ple, the action Produce Units takes a list of pairs of the form (unit-type, count) and the

bot will begin to produce that number of units of each type given. All expectations for

tasks in the current h-plan are inferred using the ontology Ω, which include all facts in

the current state and new facts inferred from the rules in the ontology.

Ontology: The ontology represents the current state of the game at any given point

in time. It is refreshed every n frames of the Starcraft match, and contains facts such as

regions, unit data (health, location, etc.), player data (scores, resources, etc.). The state

model is represented as a semantic web ontology.

87

www.manaraa.com

Bot: Component that directly interfaces with Starcraft to issue game commands.

This component dumps game state data that is loaded into the ontology and listens for

actions from the Goal Reasoner.

Game State Dumper: Component within the Starcraft Plan Executor that outputs all

of the current game state data to a file which is then used to populate the ontology of

the State Model of the controller.

Plan Action Listener: The bot listens for actions from the controller, and as soon

as it receives an action it begins executing it independently of other actions. It is the

job of the controller to ensure the correct actions are sent to the bot. The bot only has

knowledge of how to execute individual actions.

7.5.1 Planner

While actions in a level-0 plan are the most basic tasks in the context of the h-plans,

these actions encode complex behavior in the context of the Starcraft games. For ex-

ample, the action Produce Units takes multiple in-game commands to create the desired

number and type of units (i.e., 5 Terran Marines). These include commands to harvest

the necessary resources, build required buildings, and issue an individual command to

build each unit. Each action is parametrized to take different arguments. This allows

general actions to be used in different situations. For example, Produce Units is used to

produce any kind of units, while Move Units is used to move any units to any region.

Table 7.3 list the plans in our case base.

88

www.manaraa.com

Name Description Actions

Attack
Ground
Direct

Produce ground units and
attack the enemy base di-
rectly

Produce Units (marine, x)
Move Units (enemy base) At-
tack Units (enemy base)

Attack
Air Direct

Produce air units and attack
the enemy base directly

Produce Units (marine, x)
Move Units (enemy base) At-
tack Units (enemy base)

Attack
Both
Direct

Produce air units and attack
the enemy base directly

Produce Units (marine, x)
Produce Units (wraith, x)
Move Units (enemy base) At-
tack Units (enemy base)

Attack
Ground
Surround

Calculates the location of
each region surrounding
the enemy base, send units
to that location, and then
attacks the enemy

Attack Ground Direct (xR)
—Produce Units
—Move Units
—Attack Units
Attack Ground Direct (enemy base)

Attack
Air Sur-
round

Calculates the location of
each region surrounding
the enemy base, send units
to that location, and then
attacks the enemy

Attack Air Direct (xR)
—Produce Units
—Move Units
—Attack Units
Attack Ground Direct (enemy base)

Rush De-
fend Re-
gion

Take all units from a pre-
vious plan and defend the
home base

Acquire Units (unit ids list) Move
Units (home base) Attack Region
(enemy base)

Attack
And
Distract

Attack directly with ground
units while at the same
time attacking from behind
with air units which fo-
cus specifically on killing
worker units

Attack Air Sneak Attack
Ground Direct

Attack
Air Sneak

Fly units directly to near-
est corner of the map in re-
gards to the enemy base be-
fore sending to enemy base

Produce Units (wraith, x)
Move Units (nearest corner)
Move Units (enemy base) At-
tack Worker Units (enemy
base)

Table 7.3: Plans
89

www.manaraa.com

7.6 Discussion

To the best of our knowledge, LUiGi-H is the first agent to use episodic hierarchical

plan representation in the context of goal-driven autonomy where the agent reasons

with GDA elements at different levels of abstraction. Nevertheless there are a number

of related works which we will now discuss.

Other GDA systems include GRL (Jaidee and Muñoz-Avila, 2013) and EISBot

(Weber, 2012). As with all GDA systems, their main motivation is for the agents to

autonomously react to unexpected situations in the environment.

The most closely related works are the one from Muñoz-Avila et al. (2010a) and

Molineaux et al. (2010); Molineaux and Aha (2013); Shivashankar et al. (2013), which

describe the HTNbots and the ARTUE system respectively. Both HTNBots and ARTUE

use the HTN planner SHOP (Nau et al., 1999). SHOP is used because it can generate

plans using the provided HTN domain knowledge. This HTN domain knowledge de-

scribes how and when to decompose tasks into subtasks. Once the HTN plan is gen-

erated, HTNBots and ARTUE discard the k-level plans (k ≥ 1) and focus their GDA

process on the level-0 plans (i.e., the sequence of actions or primitive tasks). That is

expectations, discrepancies, explanations, all reason at the level of the actions. There

are two main difference versus our work. First, in our work we don’t require HTN

planning knowledge. Instead, LUiGi-H uses episodic knowledge in the form of HTN

plans. Second, LUiGi-H reasons about the expectations, discrepancies and explana-

tions at all levels of the HTN plan; not just at the level 0. As our empirical evaluation

demonstrates, reasoning about all levels of the HTN plans results in better performance

of the GDA process compared to a GDA process that reasons only on the level-0 plans.

Other works have proposed combining HTN plan representations and CBR. In-

90

www.manaraa.com

cluded in this group are the PRIAR (Kambhampati and Hendler, 1992) Caplan/CbC

system (Muñoz et al., 1995), Process manufacturing case-based HTN planners (Chang

et al., 2000) and the SiN system (Muñoz-Avila et al., 2001). None of these systems

perform GDA. They use CBR as a meta-level search control to adapt HTN plans as in

PRIAR or to use episodic knowledge to enhance partial HTN planning knowledge as in

SiN.

LUiGi-H is a GDA agent that combine’s CBR episodic knowledge, h-plan knowl-

edge and ontological information that enables it to reason about the plans, expectations,

discrepancies, explanations and new goals at different levels of abstraction.

We compared LUiGi-H against the ablated version, LUiGi and the results are shown

in 9.2.4. Both agents use the same case base for goal formulation and have access to the

same level-0 plans. In our experiments, LUiGi-H outperforms LUiGi demonstrating

the advantage of using episodic hierarchical plan representations over non-hierarchical

ones for GDA tasks. We noted one match where LUiGi-H lost because of a delay in

ontology reasoning time that caused discrepancy detection to respond too slowly to an

attack on LUiGi-H ’s base.

91

www.manaraa.com

Chapter 8

Metacognitive Expectations

Over the years the notion of expectation has played a central role in the monitoring

of plan execution (Pettersson, 2005; Schank, 1982) and in managing comprehension,

especially natural language understanding (Schank and Owens, 1987). A common trait

among these expectations is that they are defined as a function of the observed states

and the actions executed so far. That is, they are defined in terms of the ground level

environment; in terms of objects and events in the world (including the inferred objects

of Chapter 6).

In this chapter we introduce a new class of expectation: expectations at the metacog-

nitive level or metacognitive expectations. When cognitive processes compute expec-

tations about the ground level, we consider the processes a kind of mental action that

results in mental objects (i.e., the world-related expectations). These actions and ob-

jects then are at the object level. Analogously, processes at the metalevel can compute

expectations about the object level behaviors. Metacognitive agents operate at three

distinct levels (Cox and Raja, 2011):

• The ground level, in which an agent executes actions and makes observations of

92

www.manaraa.com

the state of the world.

• The object level (cognition), in which the agent reasons about the actions per-

formed at the ground-level, the physical objects there and states of those objects.

• The metalevel (metacognition), in which the agent introspectively reasons about

the cognition performed at the object level.

Under this perspective, agents such as GDA agents that reason about expectations

at the object level (e.g., GDA agents) can be seen as reasoning at the cognitive levels.

However, we do not know of any other work that reasons with explicit expectations at

the metalevel1.

We note that humans certainly have and exploit expectations concerning their own

mental state (Dunlosky et al., 2013). Cognitive psychology research has long demon-

strated the potential benefit and general characteristics of reasoning about mental state

and mechanisms (Flavell, 1979; Flavell and Wellman, 1977). For example game show

contestants can often decide before they retrieve a memory item whether or not they

know answers to given questions and demonstrate this by striking buzzers before com-

petitors. Phychologists examined this phenomena and found it to be a robust effect

(Reder and Ritter, 1992). More recently research has shown that even very young stu-

dents can assess how well they have learned material, can predict memory and problem-

solving performance, and can use such metacognitive expectations to choose learning

and study strategies (Dunlosky et al., 2013). However not all metacognition is neces-

sarily helpful; it can actually lead to detrimental performance (Wilson and Schooler,

1991).
1The emphasis here is on the explicitness and formalism of these expectations. MetaAQUA (Cox,

1996; Michael and Ashwin, 1999; Lee and Cox, 2002) reasoned with implicit meta-level expectations.

93

www.manaraa.com

Figure 8.1: Schematic action-perception cycle for both object and meta-levels of the
MIDCA Cognitive Architecture (used with permission from Michael T. Cox, see Cox
et al. 2016 for more on MIDCA)

8.1 The MIDCA Metacognitive Architecture

The Metacognitive Integrated Dual-Cycle Architecture (MIDCA) Cox et al. (2016) is a

three level architecture composed of the ground level (where actions and perceptions oc-

cur), the object level (where problem-solving and comprehension processes exist), and

the metalevel (which introspectively monitors and controls the object-level cognition).

The architecture integrates both planning and interpretation algorithms; our current im-

plementation incorporates the SHOP2 hierarchical network planner (Nau et al., 2003)

and a custom-made heuristic planner (Bonet and Geffner, 2001). In addition to simula-

tion of standard planning domains, it also includes an ROS interface to physical robots

(i.e., a Baxter humanoid robot) and the Gazebo physics simulator.

At the object level, the cycle achieves goals that change the environment. At the

metalevel, the cycle achieves goals that change the object level. That is, the metacog-

nitive “perception” components introspectively monitor the processes and mental state

changes in cognition. Monitoring occurs by reasoning over traces of object-level be-

havior (e.g., decision making and inferences). The “action” component consists of

94

www.manaraa.com

a metalevel controller that mediates reasoning over an abstract representation of the

object-level cognition. It can manage the activity at the object level by changing the

object-level goals or by changing MIDCA’s domain knowledge (e.g., SHOP action

models).

8.2 Formalizing Metacognitive Expectations

We define a model of the metalevel, MΣ, in an analogous manner of the action model

used in planning: Σ = (S,A, γ), where S is the set of states that the agent can visit,

A is the collection of actions that the agent can take and γ is the state-action transition

function γ : S ×A→ S. Let MΣ = (SM , AM , γM) where SM is a collection of mental

states, AM is a collection of mental actions, and γM is a transition function defined as

γM : SM × AM → SM .

A mental state is a vector of variables, 〈v1, ..., vn〉. The variables that comprise a

mental state are dependent on the agent; in MIDCA we use a separate variable for each

of the following datums: Selected Goals, Pending Goals, Current Plan, World State,

Discrepancies, Explanations, Actions. Thus our mental state is represented as a vector

of length n = 7 as follows: (gc, Ĝ, π,MΨ, D,E, αi) We make no constraints on the type

of data for a mental state variable.

A mental action may perform reads or updates to variables in a mental state. MIDCA

employs the following mental actions: Perceive, Detect Discrepancies, Explanation,

Goal Insertion (i.e., formulates the set of goals Ĝ to be achieved), Evaluate (i.e., checks

to see if the state MΨ entails the current goal gc, and if so, removes it from Ĝ), Intend

(i.e., selects a new gc from Ĝ), Plan (i.e., calls a planner to generate a plan π to achieve

gc), and Act (i.e., executes the next step αi from π). MIDCA enforces a strict sequence

95

www.manaraa.com

of mental actions that repeats (e.g., Perceive is always followed by Detect Discrepan-

cies, Act is always followed by Perceive).

A mental trace, τ , is a sequence of mental states and mental actions interleaved.

Specifically τ : 〈sM0, αM1, sM1, αM2, ...〉sMn where sM0, sM1 ∈ SM and αM1, αM2 ∈

AM . When the sequence of mental actions are fixed (as is the case in MIDCA), a

trace may be represented as only the mental states τ : 〈sM0, sM1, ...〉. However, for

the purpose of demonstrating the importance of the interaction of mental actions and

mental states, we will use the representation of interleaved mental actions and mental

states when describing metacognitive expectations.

We define a metacognitive expectation, EXM(sMi
, αMi

, sMi+1), over a segment

of a mental trace τ . The length of the segment is always three: prior mental state,

sMi
, mental action, αMi

, and subsequent mental state, sMi+1. Since a mental ac-

tion can read the value of a mental state and update that variable given its original

value, the mental state before and after a mental action are relevant to the expecta-

tion (thus the τ segment length of three). The metacogntive expectation is a function,

EXM : (sMi
, αMi

, sMi+1) → {true, false}. If the output is true, the expectation is

met. Otherwise, the expectation is not met.

We now give an example of a metacognitive expectation that represents the follow-

ing notion: when the agent encounters a discrepancy, then the agent will generate an

explanation for this discrepancy. Formally this is expressed as follows: EXM(sMi
,

Explanation, sMi+1) is a function that checks vexplanations 6= ∅ in sMi+1 whenever

vdiscrepancies 6= ∅ in sMi
. For example, at the object level when MIDCA detects a dis-

crepancy between the expected outcome of an action and the observed state, then an

explanation for this object-level discrepancy must be generated. If the agent executes

the action to move east and MIDCA observes that the agent remains in the same place,

96

www.manaraa.com

MIDCA might generate as an explanation that the agent is stuck and generate a new

goal to become ¬stuck. In our experiments at some point during execution, strong

winds will permanently affect the agent’s move-east action, causing it to move not only

one cell east but also an additional three cells to the east. When this happens, MIDCA

cannot generate any plausible explanation for this discrepancy at the object level. This

triggers a discrepancy with the metacognitive expectation because no explanation at the

ground-level was generated. In the next section we describe the MIDCA procedure and

indicate how MIDCA deals with this discrepancy of metacognitive expectations.

8.3 Reasoning with Metacognitive Expectations

In the MIDCA architecture, mental traces are constructed when cognitive processes

are executed at the object level. Algorithm 3 illustrates the procedure for capturing

mental states and process execution. The gamma function is an implementation of γM

described above. We assume here that the application of any cognitive process to an

input state will output a result sM in the appropriate format (i.e., a 7-tuple mental state).

The input, output and time of invocation are recorded in self-referential object form for

the process (Lines 3-6). The function now(t) in Line 5 is a temporal predicate as defined

in active logic (Anderson et al., 2008), a kind of step logic. The process and then the

output state are subsequently appended to the mental trace τ . Note that this assembles

the mental trace in opposite order compared to the description in the previous section.

However Algorithm 4 below will reverse the sequence. Finally Line 9 returns the output

to complete the procedure.

After initialization of the basic metacognitive state (Line 8), cognition performs

one phase (determined by Lines 9-12) of its action-perception cycle (i.e., executes the

97

www.manaraa.com

switch-case control structure in Lines 14-32) and then invokes metacognition (Line 33).

Each clause in the switch returns a mental state as defined in the previous section but

modifies only selective elements in the state. A t in any element’s position indicates

that the value remains unchanged. For example, perceive assigns a value to the fourth

element of the state (a percept ~p representation of the environment denoted by Ψ) to

be unioned into the model of the environment MΨ (see Line 16). The remaining six

elements are not effected.

Algorithm 3 The gammaM procedure that creates a mental trace τ . The expression
head|〈tail〉 prepends the element head to the sequence 〈tail〉.

1: global τ
2: procedure γM (process, args)
3: process.in← args
4: process.out← apply(process, args)
5: if now(t) then
6: process.time← t

7: τ ← process.self |τ
8: τ ← process.out|τ
9: return(process.out)

Note the parallel control structure between the cognitive and metacognitive cycles.

Each includes a comprehension sequence of 〈perceive/monitor, interpret, evaluate〉

and a problem-solving sequence of 〈intend, plan, act〉. In contrast, the former uses γM

to record a trace whereas the latter does not. Yet functionally they are very similar.

The cognitive level interprets the percepts from the external environment; whereas,

the metalevel interprets the current trace of the internal object level. Interpretation is

actually composed of a GDA three-step process. It detects discrepancies, explains them,

and uses the explanation to generate potential new goals to resolve the discrepancy.

This is implemented by having interpret add explain to the head of the processes to

be executed (Line 18) and then calling detect (Line 19). Explanation then prepends

98

www.manaraa.com

Algorithm 4 The MIDCA procedure. Note that each invocation of γM returns a cog-
nitive 7-tuple. For brevity we indicate with the “t” symbol an element that does not
change as a result of the output.

1: global τ , cycle
2: cycle← 〈perceive, interpret, eval, intend, plan, act〉
3: procedure MIDCA(Ψ)
4: gc ← ∅; Ĝ← ∅
5: τ ← 〈∅〉 . Initialize trace with sM0

6: cognition(∅, φ, cycle)

7: procedure COGNITION(MΨ, π, procs)
8: πM ← φ; gM ← ∅; ĜM ← ∅
9: if procs = 〈〉 then

10: procs← cycle

11: next← head(procs)
12: procs← tail(procs)
13:
14: switch next do
15: case perceive
16: (t, t, t,MΨ ∪ ~p, t, t, t)← γM (perceive, (Ψ))
17: case interpret
18: procs← explain|procs
19: (t, t, t, t, D, t, t)← γM (detect, (~p, π))
20: case explain
21: procs← insertion|procs
22: (t, t, t, t, t, E, t)← γM (explain, (D, π))

99

www.manaraa.com

23: case insertion
24: (t, Ĝ, t, t, t, t, t)← γM (goal-insertion, (E, π))
25: case eval
26: (t, Ĝ, t,MΨ, t, t, t)← γM (evaluate, (D,E, gc))
27: case intend
28: (gc, t, t, t, t, t, t)← γM (intend, (Ĝ, π))
29: case plan
30: (t, t, π′, t, t, t, t)← γM (plan, (MΨ, gc, π))
31: case act
32: (t, t, t, t, t, t, α)← γM (act, (π′))

33: metacognition(MΨ, ∅, π′, τ, procs)

34: procedure METACOGNITION(MΨ,MΩ, π, τ, procs)
35: τ ′ ← monitor(MΨ, π, reverse(τ))
36: DM , EM , ĜM ← meta-interpret(τ ′, πM)
37: MΩ, ĜM ← meta-evaluate(DM , EM , gM)
38: if ĜM = ∅ then
39: cognition(MΨ, π, procs)
40: else
41: gM ← meta-intend(ĜM , π)
42: π′M ← meta-plan(MΩ, gM , π)
43: controller(π′M)
44: metacognition(MΨ,MΩ, π

′
M , τ

′, procs)

100

www.manaraa.com

goal-insertion to the procedure sequence (Line 21) and calls explain (Line 22).

Algorithm 4 Dannenhauer et al. (2017) describes the basic high-level flow of control

for the MIDCA architecture. MIDCA initializes the internal state (Lines 4-6) and starts

a cognitive cycle (Line 6). The mental trace τ is initialized to the sequence having the

empty set as its only member. The empty set represents the initial mental state sM0. It

is empty because no perception has occurred and thus no knowledge of the world yet

exists.

If an expectation failure occurs (on Line 36, ĜM will not be empty), it attempts to

repair itself; otherwise it calls cognition to continue. Note that the mental trace τ is

reversed on Line 35 before passing to the monitor function given that it is constructed

in the opposite order by Algorithm 3. Interpretation at the metalevel is performed as a

three-step process as is the case with the object-level analogue. It is however performed

in a single call on line 36, setting a discrepancyDM if one exists from any metacognitive

expectation, explainingDM , and then formulating a new goal if necessary to change the

object level. Line 37 performs evaluation on any goal from previous metalevel cycles,

and then Line 38 checks to see if a discrepancy existed (it will if a new meta-level

goal was formulated. If so, it performs goal selection with intend (Line 41), plans for

the goal at Line 42 and executes the plan with the metalevel controller on Line 43.

Metacognition is called again to perform evaluation on the results (Line 44).

Reconsidering the example at the end of the previous section, when MIDCA fails

to generate an explanation at the object level because permanent changes in the wind

conditions causes the agent to always be pushed an additional 3 cells whenever it moves

east. Since no explanation is generated at the object level, it causes a discrepancy of

a metacognitive expectation. In this case Line 36 will evaluate τ ′, which will contain

a sequence of the form (sMi
, Explanation, sMi+1) with vexplanations = ∅ in sMi+1 and

101

www.manaraa.com

vdiscrepancies 6= ∅ in sMi
. This will detect the discrepancy and generate a new goal ĜM .

Therefore the condition in Line 38 fails and the else code in Lines 41-44 is performed.

Line 41 selects the new goal, gM , to fix the domain theory (the new goal is generated

during meta-interpret on Line 36 and is a member of the resulting ĜM). Line 42 gen-

erates a plan to modify the domain description (now the effects of the move east will

correctly indicate that it will be pushed 3 additional cells to the right), the controller

makes this change in the domain description (Line 43) and the process is re-started

again.

8.4 Discussion

This work extends the existing research on anticipatory approaches to intelligent agents

within a cognitive architecture that use expectations to focus problem solving on salient

aspects of a problem. We introduce metacognitive expectations, a novel class of ex-

pectations that applies the approach to the problem-solving cycle itself rather than just

the environment and actions executed within it. Using a persistent domain, NBeacons

(Section 9.1.6), that changes over time, we provide empirical results (Section 9.2.5)

showing the benefit of metacognition made available by metacognitive expectations.

102

www.manaraa.com

Chapter 9

Evaluation

9.1 Simulated Domains

The following domains were used to test the approaches described in Part II. The qual-

ities of these domains are shown in Table 9.1

Domain Name Dynamic Partially Observable Deterministic Actions
Starcraft Yes Yes No
Marsworld1 Yes No Yes
Arsonist Yes No Yes
Marsworld2 Yes Yes Yes
BlocksCraft Yes Yes Yes
NBeacons Yes No Actions’ effects may change

over time

Table 9.1: Properties of Simulated Domains

All of these domains have properties that make planning and execution difficult, and

in many cases present an environment ideal for observing the benefit of self-monitoring

strategies.

103

www.manaraa.com

Figure 9.1: Screenshot of Starcraft Gameplay

9.1.1 Starcraft

Real-Time Strategy (RTS) is a large genre of video games with many commercially

successful titles including Starcraft, which has sold millions of copies and enjoyed a

professional gaming scene, particularly in South Korea. In general, the objective of

real time strategy games is to build up an army and attack with that army to defeat an

opponent attempting to do the same. The real-time quality of these games is that speed

is important: the faster the player can issue commands, the faster it can build, move, and

attack with his/her army.1. The strategy component of these games lie in both economic

and combat decision making. Players start with just a few units and nearby resources.

1Some actions have a minimum wait time: it might take 3 seconds for a soldier to be produced once
the player gives the command

104

www.manaraa.com

Only after using initial workers to harvest these resources, can the players produce more

units and units of various types. Once the player has some units with which they wish to

battle, they must move them into proximity of the enemy and engage. A player has won

when either his/her opponent has resigned or all of the opponents troops and buildings

are destroyed.

Starcraft has three factions: Terran, Protoss, and Zerg. Players choose which faction

they wish to play as, and each has its own unique play style and units. For example,

Zerg units have an ability to burrow into the ground to avoid detection and almost all

Terran buildings can be airlifted and fly (at a slow pace) around the map (neither Zerg

nor Protoss can move their buildings).

At the beginning of a match, there is a preset number of resources on the map.

Usually each player starts far away from another player, and near some resources. The

resources in the game are minerals and vespene gas. Minerals must be harvested by

worker units, and players spend these resources to build buildings, produce fighting or

defensive units, and to pay for research upgrades. Generally the more powerful a unit,

the more resources it costs. Thus, an important part of the game is making sure one

has a steady stream of resources being harvested. There are also multiple strategies that

involve preventing a player from acquiring these resources (i.e., killing or harassing

enemy worker units) to slow down the economy of that player.

Each faction has many unit and building types for the player to choose. To give

some perspective, Terran has ten different types of ground units, five different kinds of

air units, twelve different kinds of buildings, with an additional six building add-ons

the player can build once a building is complete. For example, when a player builds

a Terran Factory, they can only build vultures (a type of fast ground unit). However,

if they build a machine shop add-on, the factory will then be able to produce seige

105

www.manaraa.com

tanks (slow moving but powerful damage unit with long-range). There are also units

that can only be produced by if the player has multiple buildings. Continuing with

the Terran factory example, if the player also has an armory (a building used to do

upgrades on units) then a factory can produce goliaths (a versatile ground unit that can

also attack air units). To add even more complexity, some buildings allow the player to

spend resources to perform research upgrades: these generally improve some quality of

units, such as giving machine units like vultures and tanks increase damage against the

opponent.

The order in which you construct buildings and produce fighting units is crucial in

the beginning of a match. There is a trade-off between constructing the buildings and

harvesting the resources that are needed to build more powerful units in the future versus

building weaker units more quickly. A rush attack is when one player builds many

cheap units to attack the enemy, before he has produced any defensive capabilities.

It is important to note that if a rush fails, the player who rushed may then be at a

disadvantage, having less resources then the defending player who was planning for the

long term.

Another important aspect of Starcraft is “fog of war”: each players visibility of the

map is determined from the radius of its units. From the players perspective, a region is

unknown if it is enveloped in the fog of war. This makes Starcraft a partially observable

domain. Unless your units are near enemy units, you can not see them. Scouting

(sending a troops to see what the enemy is doing, is an important strategic aspect).

Starcraft has an active research community and the game has enjoyed world-wide

popularity (including televised professional matches) and remains a challenging domain

for automated computer agents. Like games such as chess and go, there are professional

human experts for which to test A.I. against. Evidence of the difficulty of the domain

106

www.manaraa.com

for A.I. comes not only from characteristics of the game (massive state space, stochas-

tic actions, partial visibility, etc.) but also from three years of competitive entries in

tournaments (i.e., AIIDE Annual Starcraft Competition) in which the best automated

entry has performed poorly against a human expert. Figure 9.1 shows a screenshot of

the game where the player has issued an attack command to the highlighted units in the

middle of the screen: they are attacking an enemy bunker that has begun to catch fire.

9.1.2 Marsworld1

Marsworld1 is a domain involving a rover agent in a tile-grid environment which is

tasked with activating beacons. The underlying idea behind beacon activations is to cre-

ate a signal. Marsworld1 is inspired from Mudworld from Molineaux and Aha (2014).

Mudworld is composed of a discrete grid and every tile can either have mud or no mud;

mud is randomly generated with a 40% chance probability per tile at the beginning of

each scenario. The agent can only observe its current and adjacent locations. The goal

of the agent is to navigate from its starting position to another tile at least 4 tiles away.

In Mudworld mud is an obstacle that causes the speed of the agent to be halved;

in our domain Marsworld1 mud causes the agent to be stuck. This difference allows

us to examine obstacles that require choosing new goals. The other difference between

Marsworld1 and Mudworld is the addition of a second task and a new obstacle. The new

task is a beacon-placing perimeter construction task in which the agent must place and

activate three beacons in locations at least two spaces from any other beacon. The new

obstacle is a magnetic radiation cloud which may appear on tiles and if sharing the same

tile as a deployed beacon, deactivates the beacon from transmitting its signal. Unlike

mud which is visible to the agent when it is in an adjacent tile, magnetic radiation clouds

107

www.manaraa.com

are not visible. While deployed and activated, the beacons broadcast a signal. The agent

may generate a goal to reactivate a beacon by sending a signal to the beacon, which will

then become active unless another radiation cloud disables it again. These additions

to the original Mudworld were designed to add more complexity to the domain by

having the agents facing obstacles which affect some goals but not others. Mud affects

both navigation and perimeter-construction whereas radiation clouds only affect the

perimeter goal.

9.1.3 Arsonist

The second domain is a slight variant of the Arsonist domain from Paisner et al. (2013).

This domain uses the standard operators and goals from blocksworld domain, except the

Arsonist domain features an arsonist who randomly lights blocks on fire. The variation

in our model is the addition of a precondition to the stacking operator prohibiting for

the block underneath to be on fire so plans can fail if the fire is not extinguished. In

the original Arsonist domain, the effect of a fire that was not extinguished was unde-

fined in the planning domain. Originally fires that were not put out would cause the

score of the agent to decrease. Since our work focuses on how different expectations

affect plan completion, adding this precondition causes execution failure when fires are

ignored. Execution cost of a plan in our modified Arsonist domain is computed as fol-

lows: normal blocksworld operations (pickup, stack, unstack, etc.) cost 1 and the action

to extinguish a fire costs 5. The following parameters were used in the Arsonist domain:

the domain contained 20 blocks, the start state had every block on the table, each goal

was randomly generated where there were 3 towers each with 3 blocks, and the proba-

bility of fire was 10%. In both domains, if there are no obstacles then the execution cost

108

www.manaraa.com

is the length of the plan.

Execution cost of a plan in Marsworld1 is calculated as follows: moving from one

tile to another has a cost of 1 and placing a beacon has a cost of 1. The ‘unstuck’ action

has a cost of 5 (can be used when the agent finds itself in mud) and the ’reactivate’

beacon via signal action has a cost of 1. The following parameters were used in the

Marsworld1 setup: the grid was 10 by 10, the probability of mud was 10%, all distances

from start to destination were at least 5 tiles, and magnetic radiation clouds had a 10%

probability per turn per tile to appear.

9.1.4 Marsworld2

Marsworld2 is a modified version of Marsworld1 Dannenhauer and Muñoz-Avila (2015b).

Modifications were needed to make the domain partially observable; in that work the

authors only deal with dynamic but not partially observable domains. It consists of a

square grid of a 100 tiles, with randomly generated objects: beacons and piles of wood.

The agent also begins with flares in its inventory. The agent has one overarching goal:

signal a nearby agent for assistance. The agent creates a signal in one of three ways:

activate a specified number of beacons, light a specified number of fires using wood,

or drop and light a specified number of flares. When the agent is in the same tile as a

beacon or a pile of wood, it can activate the beacon or create a fire. If the agent is in an

empty location, it can drop and light a flare. Each of these may fail: beacons deactivate

and fires and flares can be permanently extinguished. Only after the target number of

activated beacons, fires, or flares have been reached can the agent signal for assistance.

The agent is endowed with 7 plan actions: moveup, movedown, moveright, moveleft,

activatebeacon, makefire, dropflare. The agent can sense anything in its current tile and

109

www.manaraa.com

any adjacent tiles (N,S,E,W) with a cost of 0. When an object is no longer within view,

the agent can check on the object with a sensing action at a cost of 1. Hence, an agent

can perform enough sensing to know everything it has seen, but at a high cost (i.e., the

cost for each sensing action required to view everything in its belief state).

9.1.5 BlocksCraft

The blockscraft domain is inspired by the popular sandbox game Minecraft. In this

domain the agent’s goal is to build a 10-block tower by picking up and stacking blocks.

Blocks can only be stacked on the ground or on top of blocks of the same type. The

agent does not know what blocks will be available to it over the course of its execution.

In the game Minecraft, often the player will dig for blocks and uncover different types

of blocks, only known after acquiring them. The agent always has 3 blocks in a nearby

quarry to choose from, and only after it uses a block will a new one become available.

In our experiments there are three different types of blocks and each new block has a

randomly selected type. Blockscraft is dynamic due to external agents, unseen to our

agent, that may remove blocks from a tower as well as building their own towers. This

is akin to the online multiplayer aspect of Minecraft, where many players can modify a

shared world. Blockscraft is partially observable in that our agent only has a top-down

view of the blocks. The top-down view enables sensing actions of cost 0 for the top

two blocks of each tower it has built. Any other block (those under the top two) can be

sensed with a cost of 1.

110

www.manaraa.com

9.1.6 NBeacons

We performed an ablation study of three agents in the NBeacons domain. NBeacons

is a modification of the Marsworld1 domain used in Dannenhauer and Muñoz-Avila

(2015b). The motivation behind NBeacons is to test robust agents in environments that

change over time.

The NBeacons domain is unbounded, with an area of interest to the agent that is a

square grid of 100 tiles. Scattered among the area of interest are a total of 10 beacons

and 20 sand pits. Beacons and sand pits cannot be in the same tile. Beacons are de-

activated until the agent, which must be on the same tile as the beacon, performs an

activate-beacon action. Other actions available to the agent include navigation (move

east, west, north, south) and push actions (to free an agent that has fallen into a sand

pit). There are five push actions an agent must execute before it will become free to

move. Figure 9.2 shows a part of an NBeacons domain and is centered around the area

of interest. Wind may push the agent outside the area of interest, in which case the

agent will navigate back.

The primary difference of NBeacons compared to Marsworld1, is the addition of

wind. After a period of time, wind blows causing the agent to be instantaneously pushed

extra tiles whenever it attempts to move in a specific direction. If the agent would be

pushed through any tiles containing sand pits, the agent will become stuck in the sand

pit. In our experiments, wind begins to take effect after 500 ticks at a strength of 3

(pushing the agent 3 extra tiles) and then increases to a strength of 4 after 1500 ticks.

Wind causes the effects of the agent’s move action to be permanently altered for the

rest of its execution. Due to wind, an agent will find itself in a location other than what

it expected, sometimes ending up in a sand pit. Wind always blows in one direction.

111

www.manaraa.com

Figure 9.2: NBeacons Example Scenario: a represents the agent, integers between 0-9
are the locations of beacons, and ∼ represents a sand pit

Without wind, an agent never ends up in a sand pit because it will plan around them. All

agents perform heuristic planning with the heuristic straight-line distance. Agents are

given goals to activate specific beacons. Beacons are deactivated after they are activated

to ensure an agent always has an available goal.

All three agents are implemented using the MIDCA Cognitive Architecture, albeit

with ablated components. The baseline agent, a re-planning only agent, checks to see

if the goal was reached at the end of execution of its plan, and if not, re-plans. The

second agent, a goal driven autonomy agent, uses expectations to determine when a

discrepancy of the world occurs, followed by explanation, and finally goal formulation.

Expectations use a state comparison approach described in Dannenhauer and Muñoz-

Avila (2015b) and used in Molineaux et al. (2010). Explanation is implemented as a

mapping from discrepancies to goals. Thus our GDA agent generates a goal to become

free after it explains that the agent is stuck in a sand pit. When the GDA agent finds it

112

www.manaraa.com

has been blown off course (but not in a sand pit), it inserts the same beacon-activation

goal it previously had, which triggers immediate planning in the agent’s new state.

The third agent contains the GDA mechanism of the previous agent (GDA at the

cognitive level) along with metacognition enabling it to reason with meta expectations.

These expectations include the expectation mentioned in the example earlier: an agent

detecting a discrepancy should also have generated an explanation. When the cogni-

tive GDA component, Explanation, fails to produce an explanation after observing the

discrepancy of being in an unexpected location, the metacognitive expectation is trig-

gered and the agent generates a goal to update its domain model. Since the focus of

this work is on modeling expectations and using them to detect any anomalies across

any area of cognition, we do not go into detail regarding operator learning. Research in

learning action models for planning domains has a long history (Čertickỳ, 2014; Wang,

1995, 1996; Yang et al., 2007). In this work, we use an oracle-like function that updates

the appropriate action given the distance the agent was pushed by the wind. Unlike

the other two ablated agents, the metacognitive agent is able to update its model for

the action affected by wind (i.e., when wind is blowing east, the move-east action is

updated).

Our hypothesis is that the agent equipped with metacognitive expectations will

achieve the lowest execution cost, followed by the GDA agent, and finally the replan-

ning agent. We expect that the GDA agent will immediately respond to discrepancies

while the replanning agent waits for its current invalid plan to run out. The metacogni-

tive agent will detect an explanation failure of its gda components and update its effects

of the move action to take into account the new presence of the wind. Thus the gda

agent will be blown unexpectedly into sand pits while the metacognitive agent will

avoid them once it has learned from previous encounters with the wind.

113

www.manaraa.com

Goals Obstacles Observability
Marsworld1 Activate 3 Beacons Beacon failures,

mud
Full

Marsworld2 Activate n beacons
Have n fires lit,
Have n flares lit

Beacon fail-
ures, fires and
flares may be
extinguished by
wind

Partial - with abil-
ity to query the
state for already-
seen atoms

NBeacons Activate n beacons No beacon failure;
wind pushes agent
extra tiles in the
east direction

Full

Table 9.2: Differences in Marsworld-based domains

To help summarize the differences between Marsworld1, Marsworld2, and NBea-

cons, the following Table 9.2 summarizes their differences:

9.2 Results

9.2.1 Expectations in Dynamic & Fully Observable Domains

Each of the three different kinds of expectations (immediate, state, informed) are imple-

mented in otherwise identical GDA agents. Specifically, all agents use the same goals,

HTN planning domain, explanations, and goal formulation knowledge. For the expla-

nation knowledge, we have simple rules assigning discrepancies to explanations (i.e., if

the agent is not moving then it must be stuck). Analogously, for the goal formulation

we have simple rules assigning explanations to new goals (i.e., if stuck then achieve

unstuck goal). The simplicity of our GDA agents is designed so we can adjudicate

performance differences among the agents to the different kinds of expectations.

Figures 9.3 and 9.4 show the average results of 5 runs from the GDA agents on

114

www.manaraa.com

Figure 9.3: Cumulative Execution Cost in Marsworld1

Figure 9.4: Cumulative Execution Cost in Arsonist

115

www.manaraa.com

Marsworld1 and Arsonists domains respectively. The x-axis is the number of plans the

agent has executed thus far and the y-axis is the cumulative execution cost (every data

point is the execution cost of the plan plus the previous execution cost). The solid red

line presents the results for the agent using immediate expectations, the blue dashed

line is for the agent using state expectations, and the green dot dashed line is for the

agent with informed expectations. As a reference, the execution cost of plans with no

obstacles is included: this is the purple dotted line2.

In the first domain (Figure 9.3), Marsworld1, during navigation goals the informed

expectations agent and immediate expectations agent performed equally and took slightly

longer to execute than an agent facing no obstacles. However, the state agent ended up

taking much longer because it triggered false anomalies. This is due to mud obstacles

that were not directly in its path but still counted as discrepancies since the expected

and actual states were not the same. This is the result seen from the left half of the

graph (plans 1 to 1000). The right hand side of the graph measures execution cost of

plans from perimeter construction. Here, the immediate expectations agent falls below

the perfect agent (no obstacles) because it’s execution starts failing when it fails to de-

tect beacons are missing/unavailable. These failures result in a plan execution cost of

0 causing the line to fall below the baseline. We also see that both, informed and state

agents, are able to succeed in completing the plan although the informed expectations

costs significantly less.

Figure 9.5 shows the percentage of completed plans for the immediate expectations

agents since this was the only agent that fail to complete plans. Each data point in this

graph represents the percentage of plans that were successful (i.e., did not fail), averaged

2Execution cost when their are no obstacles is not possible to achieve because obstacles do in fact
exist, but is helpful to include to give a sense of what plan execution would look like alone

116

www.manaraa.com

over 5 runs. The x-axis is the probability per tile per turn that a magnetic radiation cloud

will appear. The y-axis is the probability per tile of mud occurring. The y-axis is the

percentage of plans that were successful after executing 20 perimeter plans with the

corresponding probabilities of mud and clouds. We conclude that clouds are the only

causes of failure (as opposed to mud). In the arsonist domain we see analogous behavior

(Figure 9.6). As the probability of fire increases (x-axis) the immediate expectations

agent fails to complete more plans (y-axis).

Figure 9.5: Plan Success vs. Obstacles (Immediate Expectations agent) in Marsworld1

Figure 9.6: Plan Success vs. Obstacles (Immediate Expectations agent) in Arsonist

117

www.manaraa.com

9.2.2 Expectations in Dynamic & Partially Observable Domains

In Figures 9.7 and 9.8, the first bar of each agent (green) is the percentage of goals

achieved. The second bar (red) is the percentage sensing cost out of the maximum

sensing cost. The maximum sensing cost is the sensing cost of all atoms in the state

(as shown by our upper bound: complete expectations). The third bar (purple) shows

the normalized total of actions executed by each agent. In Figure 9.7 the chance of

failure per action executed was 20% for beacons, fires, and flares each. In Figure 9.8,

the chance that a block would be removed was 10% and the chance that a block would

be added was 30%. Chances for discrepancy to occur are computed per every planning

action executed by the agent.

118

www.manaraa.com

Figure 9.7: Sensing Cost per Failure Rate in Marsworld2

Figure 9.8: Sensing Cost per Failure Rate in Blockscraft

Looking at Figure 9.7, we see that agents using none and immediate expectations

were unable to achieve most of their goals. Agents using informed and eager were able

to achieve all of their goals. However, informed expectations incurred in significantly

less sensing costs than eager, and less than the upper bound shown by complete. The

none and immediate expectations agents do not become aware of failures outside their

limited view and thus fail to switch goals, reaching their (falsely believed) goal with

119

www.manaraa.com

less actions (compared to informed and eager). In these experiments we turned off the

sensing checking of the goals (Line 42 of the Algorithm) as the none and immediate ex-

pectation agents were taking too long to complete their goals while the informed, eager,

and complete agents are guaranteed to satisfy the goals they believe they achieved. We

did not implement goal regression in our algorithm because in the domains we tested

our agent cannot generate a complete grounded plan from the outset due to partial ob-

servability.

Figure 9.9: Sensing Cost per Failure Rate in Marsworld2

Figure 9.10: Sensing Cost per Failure Rate in Blockscraft

120

www.manaraa.com

Figure 9.8 shows results from the blockscraft domain. We see similar results to

those in marsworld. The none and immediate fail to achieve goals most of the time

because even a change in a single block will go unnoticed. We see a cost gap in the

informed and eager expectations as a result of the eager expectations agent sensing

everything it has ever seen (including in this case the other towers under construction

by other agents), while informed only keeps track of those atoms in the state that are

related to its previous actions. Thus it performs sensing only on the blocks the agent

itself has stacked.

Figures 9.9 and 9.10 show the total sensing (relative to complete expectations) var-

ied by the chance of failure in each domain. Each data point is the total sensing cost

performed out of the maximum possible sensing cost over 100 runs. In Figure 9.9 the

chance for each of beacons, fire, and flares to fail varied from 0% to 65% in increments

of 5%. Figure 9.10 shows the results of blockscraft where the chance that blocks were

removed had a failure rate that varied from 0% to 27% in increments of 3%. In Figure

9.10, only the chance that blocks were removed was varied, the chance for blocks being

added was held at 30%. We did not test with values close to 100% failure rate in both

domains because at some point the environment changes so frequently it is not possible

to achieve any goals, even with perfect sensing. By stopping at 65% and 27% respec-

tively, we are able to see what is happening while still enabling agent’s to achieve all

of their goals. In both of these figures we see that informed expectations is performing

substantially less overall sensing than eager and complete expectations. In blockscraft

the difference between eager and complete is negligible because both agents basically

see the same blocks regardless if used by the own agent or by the external agents.

121

www.manaraa.com

9.2.3 Scenario Demonstrations of High Level Expectations in

Starcraft

We now describe three scenarios where LUiGi (see chapter 6) was able to successfully

detect a discrepancy and choose a new goal using the ontology.

Scenario 1: Early rush attack

In this scenario LUIGi gets rushed by the enemy early in the game. A discrepancy is

detected soon after enemy units enter LUIGi’s starting region. The discrepancy was

that LUIGi does not control its base region because the region is contested and an

explanation trace similar to Figure 6.1 is generated. LUIGi sends the explanation to

the goal formulator component which chooses a new goal to defend the region. As

part of the new goal, LUIGi recalls all units (including those in other regions) and uses

them to attack the enemy forces in its base region. Figure 9.11a shows LUIGi in the

process of producing troops while controlling the region. Figure 9.11b shows LUIGi

pursuing a newly generated goal to defend the region after detecting and explaining the

discrepancy of not controlling the region (i.e., the blue units are enemy units).

Scenario 2: Units do not reach destination

In a second scenario, LUIGi successfully builds ground units and sends them to attack

the enemy base. However, the enemy has set up a defense force at its base region’s

perimeter, which destroys LUIGi’s ground units before they make it to the enemy re-

gion. The expectation that is violated is a primitive expectation (e.g., 〈unit5, isInRegion,

region8〉) and the discrepancy is that LUIGi expects unit5 to be in the region region8.

The explanation is simply the negation of the expectation. LUIGi chooses a new goal

122

www.manaraa.com

(a) No Discrepancy (b) Discrepancy due to enemy Rush Attack

Figure 9.11: Screenshots of LUIGi building an initial army

to build units that fly in order to bypass the units defending the enemy’s base. However,

there are multiple valid goals worth pursuing in this situation, such as building different

units capable of defeating the enemy units defending the enemy base’s perimeter, or

taking a different route leading into the enemy base.

Scenario 3: Units reach destination but do not defeat enemy

In a third scenario, LUIGi’s units were produced and moved to the enemy region suc-

cessfully, but were not able to defeat the enemy in its base region. The expectation that

LUIGi controlled the enemy base region was unmet after LUIGi’s units finished exe-

cuting the plan step to attack the enemy units in the base and LUIGi’s units were killed.

The corresponding explanation, informally, was that LUIGi had no units in the region

when the plan step of attacking had finished. While the expectation is the same as sce-

nario 1, the explanation is different (i.e., the traces are different). As a result LUIGi

chooses a different goal than in Scenario 1. In this case, LUIGi chooses a goal that does

not involve directly attacking the enemy but instead to secure and defend other loca-

tions that contain valuable resources. This type of strategy gives LUIGi an economic

123

www.manaraa.com

advantage over its opponent yielding a more substantial army later in the match.

9.2.4 LUiGi-H vs. LUiGi in Starcraft

In order to demonstrate the benefit of h-plans, we ran LUiGi-H against the baseline

LUiGi . Matches occurred on three different maps: Heartbreak Ridge, Challenger,

and Volcanis. Heartbreak Ridge is one of the most commonly used maps for Starcraft

(it is one of the maps used in AIIDE’s annual bot tournament), while Challenger and

Volcanis are common well-known maps. Data was collected every second, and the

Starcraft match was run at approximately 20 frames per second (BWAPI function call

of setLocalSpeed(20)). The performance metrics are:

• kill score. Starcraft assigns a weight to each type of unit, representing the re-

sources needed to create it. For example, a marine is assigned 100 points whereas

a siege tank is assigned 700 points. These points are pre-assigned values the game

designers used in computing a player’s score after the match finishes. The kill

score is the difference between the weighted summation of units that LUiGi-H

killed minus the weighted summation of units that LUiGi killed.

• razing score. Starcraft assigns a weight to each type of structure, representing

the resources needed to create it. For example, a refinery3 is assigned 150 points

whereas a factory4 is assigned 600 points. The razing score is the difference

between the weighted summation of structures that LUiGi-H destroyed minus

the weighted summation of structures that LUiGi destroyed.

3A refinery is a building that allows to harvest gas, a resource needed to produce certain kinds of
units. For instance, 100 gas units are needed to produce a single siege tank.

4A factory is building that allows the production of certain kinds of units such as siege tanks provided
that the required resources have been harvested.

124

www.manaraa.com

• total score. The total score is the summation of the kill score plus the razing

score for LUiGi-H minus the summation of the kill score plus the razing score

for LUiGi .

In addition to these performance metrics, the unit score is computed. The unit score

is the difference between the total number of units that LUiGi-H created minus the

total number of units that LUiGi created. This is used to assess if one opponent had an

advantage because it created more units. This provides a check to ensure that a match

wasn’t won because one agent produced more units than another.

We show our results in Figure 2 below.5

Figure 9.12: LUiGi-H vs. LUiGi on Heartbreak Ridge

The red dashed line shows the kill score, the blue dot-dashed line shows the unit

score and the green dotted line is the razing score. The total score, which is the sum

of the kill score and razing score is shown as the unbroken cyan line. All lines show

5We plot results for a single run because difference in scores between different runs were small.

125

www.manaraa.com

the difference in cumulative score of LUiGi-H vs. LUiGi . A positive value indicates

LUiGi-H has a higher score than LUiGi .

From Figure 9.12 we see that LUiGi-H ended with a higher total score than LUiGi

, starting around the 400 second mark. In Figure 9.12, the difference in the blue dot-

dashed line (unit score) shows that in this match the LUiGi system produced far many

more units than the LUiGi-H system. Despite producing significantly fewer units

LUiGi-H system outperformed LUiGi as can be seen by the total score line (cyan

unbroken). LUiGi-H scored much higher on the kill score, but less on the razing score.

A qualitative analysis revealed that LUiGi had slightly more units end game, shown in

the graph by the much higher unit score (blue dot dashed), which caused its razing score

to be higher than LUiGi-H . We expect that as the unit score approaches zero, LUiGi-H

will exhibit higher kill and especially razing scores. LUiGi-H won both this match and

the match shown in Figure 9.13, on the map Challenger.

Figure 9.13: LUiGi-H vs. LUiGi on Challenger

Figure 9.13 shows LUiGi-H vs. LUiGi on the Challenger map. LUiGi-H produces

126

www.manaraa.com

slightly more units in the beginning but towards the end falls behind LUiGi . This graph

shows a fairer matchup in unit strength. Both the razing score and kill score show

LUiGi-H outperforming the ablation: LUiGi .

LUiGi-H used h-plans with multiple levels of expectations which allowed a more

coordinated effort of the primitive actions of a plan. In the situation where LUiGi-H

and LUiGi were executing plans composed of the same primitive actions, in the event

of a discrepancy, LUiGi-H would trigger discrepancy detection that would reconsider

the broader strategy (the entire h-plan of which the primitive actions were composed

from) while LUiGi would only change plans related to the single level-0 plan that was

affected by the discrepancy. This allows LUiGi-H more control in executing high level

strategies, such as that depicted in the example in Figure 1.

A non-trivial task in running this experiment was ensuring that each bot produced

roughly the equivalent strength of units (shown in the graph as unit score). While we

were unable to meet this ideal in our experiments precisely, including the unit score

in the graphs helps identify the chances that a win was more likely because of sheer

strength vs. strategy.

We leave out the result from Volcanis due to a loss from a delay due to the reasoning

over the ontology. The average time taken by each agent to reason over the ontology

is about 1-2 seconds. This is the crucial part of the discrepancy detection step of the

GDA cycle. A delay in the reasoning means that discrepancy detection will be delayed.

During the match on Volcanis, at the first attack by LUiGi on LUiGi-H the reasoning

hangs and causes discrepancy detection to respond late and fail to change goals before

a building is destroyed. This causes LUiGi-H a big setback in the beginning of the

match and results in a loss of the game. This issue is due to the fact that at any given

point in time there are a few hundred atoms in the state (and thus ontology), with greater

127

www.manaraa.com

numbers of atoms during attacks (because the agent now has all the atoms of its enemy

units which it can now see). Optimizing the ontology for both reasoning and state space

is one possibility for future improvement: an improvement in reasoning time would

increase the rate of discrepancy detection. This also demonstrates that even though

the GDA cycle is being performed every few seconds while the bot is issuing a few

hundred actions per minute, GDA is still beneficial due to the ability to generate and

reason about high level strategies.

9.2.5 Metacognitive Expectations for Long Duration Missions

Figure 9.14 shows the results of the three agents averaged over 10 runs. Each run places

randomly the beacons and the sand pits with the agent starting in the center (see Figure

9.2 for an example). The x axis is the cumulative number of beacon-activation goals

achieved and the y axis is the cumulative execution cost.

After 500 actions, wind begins blowing east with a strength of 3 (the agent will be

pushed an additional 3 tiles), followed with another increase in wind to 4 after 1,500

actions. Prior to wind, the performance of all the agents is the same because they

are able to plan around all sand pits (roughly when y = 500). However, once wind is

introduced, the agents may be blown into a sand pit and must execute a series of push

actions to free themselves, thus raising their execution costs to activate beacons.

All agents exhibit a similar performance for the first 75 goals, which takes about

800 actions. Although wind is introduced after 500 actions, it takes some time to see

the benefit because not all actions are affected by wind. (When wind is blowing east,

only the move-east action is affect. Thus goals that do not require navigating east will

not see any impact from wind).

128

www.manaraa.com

As the agent’s continue to operate, we see that the GDA agent performs better than

the re-planning agent, and the metacognition agent performing better than the GDA

agent. This experiment shows that even when the effects of a single action change

in the environment, metacognition improves performance by identifying a cognitive

failure and addressing a limitation in the agent’s own knowledge.

Figure 9.14: Average Execution Cost in NBeacons

129

www.manaraa.com

Part III

Conclusions

130

www.manaraa.com

Chapter 10

Future Work

A core tenet of robust autonomy is detecting expectations. The contributions of chapters

4-9 open up multiple avenues for future research. This chapter discusses these areas,

particularly expanding the idea of metacognitive expectations.

The first area of future work involves informed expectations combined with sophisti-

cated failure explanation mechanisms such as DiscoverHistory (Molineaux et al., 2012)

which learns new explanation over time. Such combination could enable, for example,

meta-reasoning on failure reasons, whereby the explanation module discovers flaws in

the domain knowledge. For instance, the explanation module might identify a missing

condition in the informed expectation and introspectively examine the HTN and suggest

necessary changes to methods and/or operators to add the missing condition. The key

insight is that we know informed expectations compute the exact expectations for the

current HTN and hence missing conditions hypothesized by the explanation module as

necessary would imply a flaw in the HTN knowledge base.

Chapter 5 introduced the guiding sensing problem, for which informed expectations

performs best but does not guarantee minimal sensing costs (i.e., Condition 3 of the

131

www.manaraa.com

guiding sensing problem definition is not met). For future work, we would like to

explore solutions in the context of GDA agents, that either meet Condition 3 of the

guiding sensing problem or provide a better approximation than informed expectations.

We would also like to explore agents that can decide whether or not to perform sensing

between each plan action and at the time of believed goal achievement. Essentially,

these agents can vary the frequency of sensing (e.g., instead of sensing per each plan

action, perform sensing every n actions). As such, Informed and Eager expectations

would no longer guarantee that a believed to be true goal is actually true. Since goals

must then be confirmed by additional sensing at the time of presumed goal completion,

future work is needed to identify for which, if any, sensing frequencies there exists an

improvement in minimizing overall sensing cost.

Building off of chapters 6 and 7, an interesting area of future research is to explore

reasoning with GDA elements as ontologies might change over time. For example,

imagine a game that allows players to change the terrain over time (e.g., constructing a

bridge between two regions previously disconnected). Such a capability to reason with

these changing elements would be of particular interest for GDA agents that interact for

long-durations in an environment (e.g., an agent interacting in a persistent world).

For future work we will study automated generation of metacognitive expectations.

We will explore two potential ways to do this. First, to express the mental actions in

a declarative language that enables inference over the outcomes of these actions. This

will enable agents, akin to how expectations are generated at the ground level by GDA

systems (e.g., (Dannenhauer and Muñoz-Avila, 2015b)), to generate the metacognitive

expectations automatically. Second, to learn expectations from traces of mental states.

This will enable us to side-step the potentially difficult task of expressing mental actions

such as ”PLAN” in a declarative language. On the other hand it may require metacog-

132

www.manaraa.com

nitive agents that are capable of reasoning with multiple plausible expectations.

10.1 Towards Domain-Independent Metacognitive

Expectations

Chapter 8 introduces metacognitive expectations followed by an evaluation in Section

9.2.5. The meta expectation used in the evaluation is the EXM(sMi
,

Explanation, sMi+1), which is a function that checks vexplanations 6= ∅ in sMi+1 when-

ever vdiscrepancies 6= ∅ in sMi
(recall this expectation is informally described as: when

the agent encounters a discrepancy, then the agent will generate an explanation for

this discrepancy). Since the EXM(sMi
, Explanation, sMi+1) expectation is not con-

cerned with the values of vdiscrepancies or vexplanations but instead whether or not they are

empty, we imply that this is a domain-independent metacognitive expectation. Domain-

independent metacognitive expectations should be able to be applicable to any domain

with the only requirement being the agent has a cognitive level explanation process.

Hence we describe here another domain, the Seasonal Construction Domain, which

may demonstrate that this metacognitive expectation for explanation is useful and truly

domain-independent.

10.1.1 Seasonal Construction Domain

The proposed seasonal construction domain is an extension of the arsonist domain

(Paisner et al. (2013), see Section 9.1.3). In the arsonist domain, an unseen arsonist

lights blocks on fire and prevents the agent from building towers. In order to deal with

the unexpected fires, the agent must put out the fires before continuing (it is not possible

133

www.manaraa.com

for the agent to stack a block on top of a block that is currently on fire). The difference

of the seasonal construction domain from the arsonist domain, is that over time (as sea-

sons change from winter to summer) fire becomes more aggressive and spreads more

easily. Specifically, now when an agent tries to put out a fire, the agent must put out

the base of the fire or the fire will remain. Specifically, when two blocks are on fire, the

agent must put out the bottommost block first, and then continue putting out the rest of

the fires. Otherwise attempts to put out the fire will fail. However, since the agent is

operational in all seasons, this change will take place over time (similar to how wind

changed over time in the nbeacons domain, see Section 9.1.6). Fires are initially started

by the unseen arsonist from the original arsonist domain.

We hypothesize that the same three agents from NBeacons domain experiment (Sec-

tion 9.2.5) will demonstrate relatively similar results in the seasonal construction do-

main. All agents will operate effectively during the winter construction season. As fires

change to become more aggressive in the summer, the first agent (a replanning only

agent) will attempt to put out fires and fail when those fires having the blocks under-

neath them are on fire. Figure ?? shows the execution of putoutfire for a topmost block

when both blocks are on fire. In winter, fire is put out but in summer, the fire remains

because the block underneath (block A) is on fire. The agent will then replan but that

plan is likely to include the same putoutfire action, and the agent will become stuck

trying to create plans with the no longer effective putoutfire action (because the action

is targeting the wrong block). Agent one will perform goal reasoning after it finishes

executing the plan and realizes the goal hasn’t been met.

The second agent will perform goal driven autonomy when detecting that the putout-

fire(B) action fails. In the case, the agent will perform replanning immediately, except

it will still not learn that the putoutfire action is no longer compatible. The resulting

134

www.manaraa.com

Figure 10.1: Result of putoutfire(B) during Winter

Figure 10.2: Result of putoutfire(B) during Summer

performance of agent two (GDA agent) will likely be similar to agent one because the

agent will generate the same plans.

The third agent, equipped with the metacognitive expectation EXM(sMi
,

Explanation, sMi+1), will perform metacognition when the gda agent fails to explain

the discrepancy of the failure of the putoutfire(B) action. In this case, the metacognition

will produce an explanation that the action putoutfire(B) is no longer applicable. In this

case, the agent will generate a learning goal to update its planning operator putoutfire.

Figure 10.3 shows the original putoutfire action followed by the operators to be learned

in Figures 10.4 to 10.6. Because of the nature of the change in fire behavior, two new

operators would need to be learned in order to cover the new situations for fire behavior.

(Note: The operator in Figure 10.5 is included for clarity for the reader, this operator

would not need to be included in an implemented planner since the effects are empty).

Figure 10.4 represents the putoutfire operator for the situation when a block is on fire

135

www.manaraa.com

and is on top of another block which is not on fire. Figure 10.5 represents the putoutfire

operator when the target block is on fire and the block underneath it is also on fire.

Figure 10.6 represents the situation when the targeted block is on the table and is on

fire.

Since the third agent, equipped with metacognitive expectations would be able to

detect and update its operators with the ones shown in Figures 10.4 to 10.6, the agent

will be able to resume achieving its goals. We hypothesis that only the this agent will be

able to recover from the change in fire, and that is recovery process is triggered via the

metacognitive expectation described earlier. Thus, it seems that the same metacognitive

expectation is applicable in both nbeacons and the seasonal construction domain. The

following section proposes other metacognitive expectations to be explored in future

research.

10.1.2 Potential Domain-Independent Metacognitive Expectations

We believe that a rich area for future work lies in discovering other domain-independent

metacognitive expectations. The following table lists other possible meta expectations

and corresponding informal descriptions.

The first metacognitive expectation regards planning as a mental action that should

always produce a plan given an unachieved goal. Therefore the size of the plan and the

presence of the goal are the only requirements for this expectation. The second mental

action involves a sequence of two mental actions: Acting and Perception. During acting,

the agent will execute one or more actions, and the effects of those actions should be

perceived by the agent in the subsequent perception mental action. The third proposed

136

www.manaraa.com

Figure 10.3: Original putoutfire operator definition

Figure 10.4: First learned operator for a single fire

Figure 10.5: Second learned operator for two fires

Figure 10.6: Third learned operator for a single block

137

www.manaraa.com

Mental Action Informal Description of Expectation
1 Planning Given an unachieved goal, the mental action for plan-

ning will generate a plan of size >= 1
2 Acting, Perception Given an action and a current world state, the per-

ceived world state immediately followed an action
will consist of the results of that action

3 Evaluation, Intend Given an empty set of current goals the following
goal selection (Intend) mental action will select a new
goal. More specifically: the goal set following an in-
tend mental action should have size >= 1

Table 10.1: Proposed Metacognitive Expectations for Future Evaluation

metacognitive expectation is that goal selection (Intend) will ensure the set of goals for

the agent to pursue is non-empty.

It is important to note that these expectations trigger the identification of an anomaly.

However, the cause of failure may not be known. For example, when planning fails, it

could be due to incorrect domain knowledge or it could be due to an unachievable goal.

Another example is that when perception fails to observe a world state containing the ef-

fects of the recently executed actions, the problem may lie in the agents action execution

components (i.e., perhaps the agent’s robotic arm is broken) or in the agent’s perception

components (perhaps the agent’s camera sensor is no longer functioning properly). Cox

(1996) presents a taxonomy of these kinds of failures and their causes at the cognitive

level. The work of Chapter 8 presents explicit notions of expectations about the cogni-

tive level. The violation of these expectations acts as a trigger for diagnosis followed by

corrective measures. There may be varied responses for the same expectation failure;

deciding the appropriate response is itself a significant area for future research.

138

www.manaraa.com

Chapter 11

Summary

The road to robust autonomy is paved by improved self-monitoring. Goal reasoning

and metacognitive approaches have both been shown to increase robustness of agents.

Goal reasoning addresses robustness at a higher level than agents who only re-plan in

response to an anomaly. This is warranted in domains where the agent’s goal may be-

come invalid and attempts at re-planning are futile. Metacognitive approaches increase

robustness by dealing with anomalies that are internal to the agent. We have only begun

to scratch the surface of metacognitive agents in Chapter 8 and there remains consid-

erable and fruitful future research in that area (as mentioned in Chapter 10). Both goal

reasoning and metacognitive approaches rely on a strong discrepancy detection and this

thesis contributes multiple approaches for better expectations.

In Chapter 6 we presented abstract concepts to be used as expectations that en-

able high level planning in the complex environment of the Real-Time Strategy game

Starcraft: Broodwar. By introducing the concepts of controlled-region and contested-

region, along with the axioms and rules to allow their inference, we were able to create

high level actions leading to high level plans. High level planning in Starcraft is needed

139

www.manaraa.com

because the current state of the art involves agents that primarily focus on the most ef-

ficient production of combat units and optimizing local fighting strategies. However,

human players still easily defeat these agents, in part because they are skilled at using

multiple groups of units in higher-level strategies. The execution of such plans, and

response when they fail (as they are likely to do at least some of the time given the

adversarial nature of the game) requires high level expectations that encode many pos-

sible game states into a single expectation. We believe this approach extends to other

complex and large domains where many combinations of states represent an anomalous

event or failed action. Using semantic inference over these expectations enable higher

level behavior.

We went on to show that hierarchical plans based off of the plans in Chapter 4

needed their own version of hierarchical expectations in Chapter 5. An agent using a

case-base of hierarchical-plans with corresponding hierarchical-expectations was able

to execute plans at a higher level and defeat the agent using only flat plans.

In Chapter 6 we introduced informed expectations, which bridge the gap between

immediate expectations and state expectations. Immediate expectations fail to identify

discrepancies from past actions, thereby failing to guarantee an agent will identify all

relevant changes in the environment leading to goal failure. State expectations, the se-

quence of states corresponding to the results of each action of the plan, cover too wide

an area for discrepancy detection. In large, complex domains, they falsely trigger dis-

crepancy detection when it is not needed should anything irrelevant change. Immediate

expectations accumulates the effects of actions as they are propagated through the plan,

resulting in only those effects that are necessary in the future states or the goal state.

Informed expectations rely on the assumption that the effects of actions are relevant to

the rest of the plan and the goal. In situations where 1 or more action’s effects may be

140

www.manaraa.com

irrelevant to future plan actions or the goal, goal regression can be used to trim these

unnecessary actions. This may happen in situations where actions are learned over time.

Chapter 7 extends the results of informed expectations in Chapter 6 for domains

where exploration is required to find objects needed to achieve the goal. In these kinds

of domains, an agent is unable to plan far ahead and is constantly changing its goal de-

pending upon what is available in the environment. In such partially observable worlds,

goal regression is not applicable due to short plans. Informed expectations keep track of

the accumulated action effects which minimizes the sensing costs while enabling dis-

crepancy detection to detect if a change in the environment warrants an agent changing

its goal.

Chapter 8 presents a formalism for metacognitive expectations used within the

MIDCA cognitive architecture. Instead of expectations of the world, meta expecta-

tions are about cognition. The formalism for meta expectations defines functions which

should evaluate to true given the values of mental variables. Most cognitive processes

(i.e., planning, goal selection, perception, etc.) make use of a fairly small set (i.e., less

than ten) core mental variables. The values of these mental variables make up the cur-

rent mental state of the agent at any given point in time and cognitive processes change

the values of the mental variables. For example, planning will change the mental vari-

able Π (representing the agent’s current plan) from a null value to recently made plan,

to achieve the agents current goals (stored in the mental variable G). Meta expectations

describe expectations that are concerned with these variables and define conditions that

represent anomalous behavior.

The primary contribution of Chapter 8 and the meta expectations is the formalism

and a mental expectation regarding the cognitive explanation process. This meta ex-

pectation is fairly general (in that it only cares whether an explanation was produced;

141

www.manaraa.com

it is domain independent) and we believe there is a small set of meta expectations that

are fairly general and useful in any domain (in a similar way that domain-independed

heuristics are useful in hueristic search planners). A major area for future research is

identifying more of the meta expectations that are part of this core set.

Chapter 9 provides details on the experimental domains and corresponding results

of the approaches described in Chapter 4-8. Briefly, informed expectations outperforms

all other expectation approaches in fully observable and dynamic environments (except

goal regression for which is equal to informed expectations barring domain models

for actions with irrelevant effects, in which case goal regression is ideal). In dynamic

and partially observable environments where exploration is needed to achieve goals,

informed expectations performs best (in these cases goal regression is not available be-

cause planning is not able to generate plans for far in the future). Additionally, inferred

concepts enable the means to execute high level plans in complex real-time strategy

games such as Starcraft: Broodwar and hierarchical approaches outperform flat plans.

Finally, with meta expectations, an agent can identify when its own cognitive explana-

tion processes have failed, leading to detection of anomalies in own system. The use of

meta expectations allows an agent to update its internal domain model in domains that

change over time, leading to increased performance (goals achieved).

Expectations can be easily overlooked as part of a larger autonomous system but

play an immense role in robust autonomy. This work contributes multiple approaches

to expectations for self-monitoring agents (agents that perform their own monitoring

of their actions or internal processes). This work also sets the foundation for multiple

areas of future research. The guiding sensing problem (Chapter 5) is not likely to see

a better knowledge-free solution than informed expectations (although we do not prove

this here). Improvements are likely to come from using additional knowledge. This re-

142

www.manaraa.com

search also opens up a large area of future research in meta cognition. We have started

the effort by formalizing cognitive processes and the representation of meta expecta-

tions, and define the first concrete domain-independent meta-expectation. Applying

data mining approaches to learning domain-specific meta expectations as well as iden-

tifying other domain-independent meta expectations seem to be fruitful and important

areas for future research. A core set of domain-independent meta expectations could

signal anomalous behavior in agents operating in any domains.

143

www.manaraa.com

Appendix A

Ontology for Starcraft: Broodwar

This ontology was originally created as part of a group project during the Semantic Web

Topics course during the Spring semester of 2013. Our group consisted of myself, Will

West, and Kostas Hatalis. The ontology was then modified and the version used in the

LUiGi and LUiGi-H agents (Chapters 6 and 7) is described here. The Description Logic

(DL) Expressivity is ALCROIQ(D).

Boolean values ”true” and ”false” are of type:

http://www.w3.org/2001/XMLSchema#boolean. These values are only used in the Un-

derAttackUnit and NotUnderAttackUnit classes.

Classes

Ability

Academy

Academy v BasicStructure

144

www.manaraa.com

Addon

Addon v Unit

AdvancedStructure

AdvancedStructure v Structure

DisjointUnion Armory Factory ScienceFacility Starport

Armory

Armory v AdvancedStructure

Barracks

Barracks v BasicStructure

BasicStructure

BasicStructure v Structure

Battlecruiser

Battlecruiser v FlyingVehicle

Bunker

Bunker v BasicStructure

Chokepoint

Chokepoint ≡ Chokepoint u = connectedTo Region

145

www.manaraa.com

Chokepoint v Thing

CommandCenter

CommandCenter v BasicStructure

ComsatStation

ComsatStation v Addon

ContestedChokepoint

ContestedChokepoint v Chokepoint

ContestedRegion

ContestedRegion ≡ = containsUnitOf Player

ContestedRegion v KnownRegion

ContestedRegion v ¬ ControlledRegion

ControlTower

ControlTower v Addon

ControlledRegion

ControlledRegion v KnownRegion

ControlledRegion v ¬ ContestedRegion

146

www.manaraa.com

CovertOps

CovertOps v Addon

Dropship

Dropship v FlyingVehicle

Enemy

Enemy v Player

EnemyUnit

EnemyUnit ≡ Unit u ∃ isOwnedBy {player1}

EnemyUnit v Unit

EngineeringBay

EngineeringBay v BasicStructure

Factory

Factory v AdvancedStructure

FightingUnit

FightingUnit v Unit

DisjointUnion FlyingVehicle GroundVehicle SCV Soldier

147

www.manaraa.com

FightingUnitAbility

FightingUnitAbility v Ability

Firebat

Firebat v Soldier

FlyingVehicle

FlyingVehicle v FightingUnit

DisjointUnion Battlecruiser Dropship ScienceVessel Valkyrie Wraith

FriendlyUnit

FriendlyUnit ≡ Unit u ∃ isOwnedBy {player0}

FriendlyUnit v Unit

Ghost

Ghost v Soldier

Goliath

Goliath v GroundVehicle

GroundVehicle

GroundVehicle v FightingUnit

DisjointUnion Goliath Tank Vulture

148

www.manaraa.com

KnownRegion

KnownRegion v Region

KnownRegion v ¬ UnknownRegion

DisjointUnion ContestedRegion ControlledRegion

MachineShop

MachineShop v Addon

Marine

Marine v Soldier

Match

Medic

Medic v Soldier

MissileTurret

MissileTurret v BasicStructure

NotUnderAttackUnit

NotUnderAttackUnit ≡ Unit u hasV alue isBeingAttacked ”false”

NotUnderAttackUnit v Unit

NotUnderAttackUnit v ¬ UnderAttackUnit

149

www.manaraa.com

NuclearMissile

NuclearMissile v FlyingVehicle

NuclearSilo

NuclearSilo v Addon

PhysicsLab

PhysicsLab v Addon

Player

Player v Thing

Refinery

Refinery v BasicStructure

Region

Region v Thing

DisjointUnion KnownRegion UnknownRegion

SCV

SCV v FightingUnit

ScienceFacility

ScienceFacility v AdvancedStructure

150

www.manaraa.com

ScienceVessel

ScienceVessel v FlyingVehicle

SiegeTank

SiegeTank v GroundVehicle

Soldier

Soldier v FightingUnit

DisjointUnion Firebat Ghost Marine Medic

SpellScannerSweep

SpellScannerSweep v Unit

Starport

Starport v AdvancedStructure

Structure

Structure v Unit

DisjointUnion Academy AdvancedStructure Barracks Bunker CommandCenter En-

gineeringBay MissileTurret Refinery SupplyDepot

StructureAbility

StructureAbility v Ability

151

www.manaraa.com

SupplyDepot

SupplyDepot v BasicStructure

Tank

Tank v GroundVehicle

Thing

UnderAttackUnit

UnderAttackUnit ≡ Unit u hasV alue isBeingAttacked ”true”

UnderAttackUnit v Unit

UnderAttackUnit v ¬ NotUnderAttackUnit

Unit

Unit v Thing

UnknownRegion

UnknownRegion v Region

UnknownRegion v ¬ KnownRegion

Valkyrie

Valkyrie v FlyingVehicle

Vulture

Vulture v GroundVehicle

152

www.manaraa.com

Wraith

Wraith v FlyingVehicle

Object properties

builds

∃ builds Thing v Structure

> v ∀ builds (FlyingVehicle t GroundVehicle t Structure)

DisjointObjectProperties builds trains

canBeBuiltBy

canBeBuiltBy ≡ canBuild−

canBeTrainedBy

v topObjectProperty

canBeTrainedBy ≡ canTrain−

canBuild

canBeBuiltBy ≡ canBuild−

∃ canBuild Thing v Player

> v ∀ canBuild StructureAbility

canTrain

v topObjectProperty

153

www.manaraa.com

canBeTrainedBy ≡ canTrain−

∃ canTrain Thing v Player

> v ∀ canTrain FightingUnitAbility

connectedTo

connectedTo ≡ hasChokepoint−

∃ connectedTo Thing v Chokepoint

> v ∀ connectedTo Region

contains

contains ≡ isInRegion−

containsUnitOf

containsUnitOf ≡ hasUnitIn−

∃ containsUnitOf Thing v Region

> v ∀ containsUnitOf Player

controls

∃ controls Thing v Player

> v ∀ controls ControlledRegion

hasChokepoint

connectedTo ≡ hasChokepoint−

∃ hasChokepoint Thing v Region

> v ∀ hasChokepoint Chokepoint

154

www.manaraa.com

hasEnemyUnit

∃ hasEnemyUnit Thing v Player

> v ∀ hasEnemyUnit Unit

hasHumanCompetitor

v topObjectProperty

hasPlayer

v topObjectProperty

> v ∀ hasPlayer Player

hasPresenceIn

∃ hasPresenceIn Thing v Player

> v ∀ hasPresenceIn Region

hasStructure

hasStructure ≡ hasUnit

> v ≤ 1 hasStructure− Thing

∃ hasStructure Thing v Player

> v ∀ hasStructure Unit

hasUnit

hasStructure ≡ hasUnit

hasUnit ≡ isOwnedBy−

155

www.manaraa.com

∃ hasUnit Thing v Player

> v ∀ hasUnit Unit

hasUnitIn

containsUnitOf ≡ hasUnitIn−

∃ hasUnitIn Thing v Player

> v ∀ hasUnitIn Region

isConnectedToRegionOne

∃ isConnectedToRegionOne Thing v Chokepoint

> v ∀ isConnectedToRegionOne Region

isConnectedToRegionTwo

∃ isConnectedToRegionTwo Thing v Chokepoint

> v ∀ isConnectedToRegionTwo Region

isInRegion

contains ≡ isInRegion−

> v ≤ 1 isInRegion Thing

∃ isInRegion Thing v Unit

> v ∀ isInRegion Region

isOwnedBy

hasUnit ≡ isOwnedBy−

156

www.manaraa.com

playedAs

> v ∀ playedAs Player

topObjectProperty

trains

∃ trains Thing v Structure

> v ∀ trains (SCV t Soldier)

DisjointObjectProperties builds trains

unlocks

∃ unlocks Thing v Structure

> v ∀ unlocks Unit

Data properties

hasArmor

∃ hasArmor Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasArmor Datatypehttp://www.w3.org/2001/XMLSchema#int

hasAttackDamage

∃ hasAttackDamage Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Fight-

ingUnit

> v ∀ hasAttackDamage Datatypehttp://www.w3.org/2001/XMLSchema#int

157

www.manaraa.com

hasAttackRange

∃ hasAttackRange Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Fightin-

gUnit

> v ∀ hasAttackRange Datatypehttp://www.w3.org/2001/XMLSchema#int

hasBuildTime

∃ hasBuildTime Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasBuildTime Datatypehttp://www.w3.org/2001/XMLSchema#int

hasCenterX

∃ hasCenterX Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Region

> v ∀ hasCenterX Datatypehttp://www.w3.org/2001/XMLSchema#int

hasCenterY

∃ hasCenterY Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Region

> v ∀ hasCenterY Datatypehttp://www.w3.org/2001/XMLSchema#int

hasChokepointCenterX

∃ hasChokepointCenterX Datatypehttp://www.w3.org/2000/01/rdf-schema#LiteralvChoke-

point

> v ∀ hasChokepointCenterX Datatypehttp://www.w3.org/2001/XMLSchema#int

158

www.manaraa.com

hasChokepointCenterY

∃ hasChokepointCenterY Datatypehttp://www.w3.org/2000/01/rdf-schema#LiteralvChoke-

point

> v ∀ hasChokepointCenterY Datatypehttp://www.w3.org/2001/XMLSchema#int

hasChokepointId

∃ hasChokepointId Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Choke-

point

> v ∀ hasChokepointId Datatypehttp://www.w3.org/2001/XMLSchema#int

hasCurrentHitPoints

∃ hasCurrentHitPoints Datatypehttp://www.w3.org/2000/01/rdf-schema#LiteralvUnit

> v ∀ hasCurrentHitPoints Datatypehttp://www.w3.org/2001/XMLSchema#int

hasElapsedGameTime

>v∀ hasElapsedGameTime Datatypehttp://www.w3.org/2001/XMLSchema#dateTime

hasEnergy

∃ hasEnergy Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v FightingUnit

> v ∀ hasEnergy Datatypehttp://www.w3.org/2001/XMLSchema#int

hasGasCost

∃ hasGasCost Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasGasCost Datatypehttp://www.w3.org/2001/XMLSchema#int

159

www.manaraa.com

hasKillScore

∃ hasKillScore Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasKillScore Datatypehttp://www.w3.org/2001/XMLSchema#int

hasMapHeight

∃ hasMapHeight Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal vMatch

> v ∀ hasMapHeight Datatypehttp://www.w3.org/2001/XMLSchema#int

hasMapName

∃ hasMapName Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal vMatch

> v ∀ hasMapName Datatypehttp://www.w3.org/2001/XMLSchema#string

hasMapWidth

∃ hasMapWidth Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal vMatch

> v ∀ hasMapWidth Datatypehttp://www.w3.org/2001/XMLSchema#int

hasMaxHitPoints

∃ hasMaxHitPoints Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasMaxHitPoints Datatypehttp://www.w3.org/2001/XMLSchema#int

hasMaxNumOfPlayers

> v ∀ hasMaxNumOfPlayers Datatypehttp://www.w3.org/2001/XMLSchema#int

160

www.manaraa.com

hasMineralCost

∃ hasMineralCost Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasMineralCost Datatypehttp://www.w3.org/2001/XMLSchema#int

hasName

> v ∀ hasName Datatypehttp://www.w3.org/2001/XMLSchema#string

hasNumberOfPlayers

> v ∀ hasNumberOfPlayers Datatypehttp://www.w3.org/2001/XMLSchema#int

hasNumberOfRegions

> v ∀ hasNumberOfRegions Datatypehttp://www.w3.org/2001/XMLSchema#int

hasPlayerId

> v ≤ 1 hasPlayerId

∃ hasPlayerId Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasPlayerId Datatypehttp://www.w3.org/2001/XMLSchema#int

hasRateOfFire

∃ hasRateOfFire Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Fightin-

gUnit

> v ∀ hasRateOfFire Datatypehttp://www.w3.org/2001/XMLSchema#int

161

www.manaraa.com

hasRazingScore

∃ hasRazingScore Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasRazingScore Datatypehttp://www.w3.org/2001/XMLSchema#int

hasRegionId

∃ hasRegionId Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Region

> v ∀ hasRegionId Datatypehttp://www.w3.org/2001/XMLSchema#int

hasSize

∃ hasSize Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasSize Datatypehttp://www.w3.org/2001/XMLSchema#int

hasSpeed

∃ hasSpeed Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v FightingUnit

> v ∀ hasSpeed Datatypehttp://www.w3.org/2001/XMLSchema#int

hasSpentGas

∃ hasSpentGas Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasSpentGas Datatypehttp://www.w3.org/2001/XMLSchema#int

hasSpentMinerals

∃ hasSpentMinerals Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasSpentMinerals Datatypehttp://www.w3.org/2001/XMLSchema#int

162

www.manaraa.com

hasStartDate

> v ∀ hasStartDate Datatypehttp://www.w3.org/2001/XMLSchema#dateTime

hasSupplyTotal

∃ hasSupplyTotal Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasSupplyTotal Datatypehttp://www.w3.org/2001/XMLSchema#int

hasTileSet

> v ∀ hasTileSet Datatypehttp://www.w3.org/2001/XMLSchema#string

hasTravelType

∃ hasTravelType Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Fightin-

gUnit

> v ∀ hasTravelType Datatypehttp://www.w3.org/2001/XMLSchema#string

hasUnitId

> v ≤ 1 hasUnitId

∃ hasUnitId Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasUnitId Datatypehttp://www.w3.org/2001/XMLSchema#int

hasUnitScore

∃ hasUnitScore Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Player

> v ∀ hasUnitScore Datatypehttp://www.w3.org/2001/XMLSchema#int

163

www.manaraa.com

hasWebsite

> v ∀ hasWebsite Datatypehttp://www.w3.org/2001/XMLSchema#anyURI

hasWidth

∃ hasWidth Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Chokepoint

> v ∀ hasWidth Datatypehttp://www.w3.org/2001/XMLSchema#double

hasXCoord

∃ hasXCoord Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasXCoord Datatypehttp://www.w3.org/2001/XMLSchema#int

hasYCoord

∃ hasYCoord Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ hasYCoord Datatypehttp://www.w3.org/2001/XMLSchema#int

isBeingAttacked

∃ isBeingAttacked Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Unit

> v ∀ isBeingAttacked Datatypehttp://www.w3.org/2001/XMLSchema#boolean

sameAs

∃ sameAs Datatypehttp://www.w3.org/2000/01/rdf-schema#Literal v Thing

> v ∀ sameAs Datatypehttp://www.w3.org/2001/XMLSchema#anyURI

164

www.manaraa.com

SWRLs

Region(?r) ∧ Unit(?u) ∧ isInRegion(?u, ?r)→ KnownRegion(?r)

Player(?p) ∧ Region(?r) ∧ Unit(?u) ∧ isInRegion(?u, ?r) ∧ isOwnedBy(?u, ?p)→

hasPresenceIn(?p, ?r)

Player(?p1) ∧ Player(?p2) ∧ Region(?r) ∧ hasPresenceIn(?p1, ?r) ∧

hasPresenceIn(?p2, ?r) ∧ differentFrom(?p1, ?p2)→ ContestedRegion(?r)

165

www.manaraa.com

Individuals

academyAvailable

armoryAvailable

barracksAvailable

battleCruiserAvailable

bunkerAvailable

commandCenterAvailable

comsatStationAvailable

controlTowerAvailable

covertOpsAvailable

dropshipAvailable

engineeringbayAvaliable

factoryAvailable

firebatAvailable

ghostAvailable

goliathAvailable

machineShopAvailable

marineAvailable

166

www.manaraa.com

medicAvailable

missileTurretAvailable

nuclearMissileAvailable

nuclearSiloAvailable

physicsLabAvailable

player0

player0 : Player

{player0} 6≡ {player1}

hasPlayerId (player0 ”0” http://www.w3.org/2001/XMLSchema#int)

player1

player1 : Player

{player0} 6≡ {player1}

hasPlayerId (player1 ”1” http://www.w3.org/2001/XMLSchema#int)

167

www.manaraa.com

refineryAvailable

scienceFacilityAvailable

scienceVesselAvailable

scvAvailable

siegeTankAvailable

spellScannerSweepAvailable

starportAvailable

supplyDepotAvailable

tankAvailable

valkyrieAvailable

vultureAvailable

wraithAvailable

Datatypes

PlainLiteral

anyURI

boolean

dateTime

double

168

www.manaraa.com

int

string

169

www.manaraa.com

Bibliography

Aha, D. W., Anderson, T. S., Bengfort, B., Burstein, M., Cerys, D., Coman, A., Cox,

M. T., Dannenhauer, D., Floyd, M. W., Gillespie, K., et al. (2015). Goal reasoning:

Papers from the acs workshop. Technical report, Georgia Institute of Technology.

Anderson, M., Gomaa, W., Grant, J., and Perlis, D. (2008). Active logic semantics for

a single agent in a static world. Artificial Intelligence, 172(8-9):1045–1063.

Ayan, N., Kuter, U., Yaman, F., and Goldman, R. (2007). HOTRiDE: Hierarchical

ordered task replanning in dynamic environments.

Bäckström, C. and Nebel, B. (1995). Complexity results for sas+ planning. Computa-

tional Intelligence, 11(4):625–655.

Benson, S. and Nilsson, N. (1993). Reacting, Planning, and Learning in an Autonomous

Agent. Machine intelligence 14.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1):5–33.

Bouguerra, A., Karlsson, L., and Saffiotti, A. (2007). Active execution monitoring

using planning and semantic knowledge. ICAPS Workshop on Planning and Plan

Execution for Real-World Systems.

170

www.manaraa.com

Čertickỳ, M. (2014). Real-time action model learning with online algorithm 3 sg. Ap-

plied Artificial Intelligence, 28(7):690–711.

Chang, H.-C., Dong, L., Liu, F., and Lu, W. F. (2000). Indexing and retrieval in ma-

chining process planning using case-based reasoning. Artificial Intelligence in Engi-

neering, 14(1):1–13.

Churchill, D. (2013). 2013 AIIDE StarCraft AI Competition Report.

http://webdocs.cs.ualberta.ca/˜cdavid/starcraftaicomp/

report2013.shtml.

Coddington, A., Fox, M., Gough, J., Long, D., and Serina, I. (2005). Madbot: A

motivated and goal directed robot. In Proceedings of the National Conference on

Artificial Intelligence, volume 20.

Cox, M. T. (1996). Introspective multistrategy learning: Constructing a learning strat-

egy under reasoning failure. PhD thesis, Georgia Institute of Technology, College of

Computing, Atlanta. Tech. Rep. No. GIT-CC-96-06.

Cox, M. T. (2007). Perpetual Self-Aware Cognitive Agents. AI magazine, 28(1):32.

Cox, M. T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Munoz-Avila, H., and Perlis, D.

(2016). Midca: A metacognitive, integrated dual-cycle architecture for self-regulated

autonomy. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.

Palo Alto, CA: AAAI Press.

Cox, M. T., Oates, T., Paisner, M., and Perlis, D. (2012). Noting anomalies in streams

of symbolic predicates using a-distance. Advances in Cognitive Systems, 2:167–184.

171

http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml

www.manaraa.com

Cox, M. T. and Raja, A. (2011). Metareasoning: An introduction. In Metareasoning:

Thinking about thinking, pages 3–14. MIT Press.

Cox, M. T. and Veloso, M. M. (1998). Goal transformations in continuous planning.

In Proceedings of the 1998 AAAI fall symposium on distributed continual planning,

pages 23–30.

Dannenhauer, D. and Muñoz-Avila, H. (2013). LUIGi: A Goal-Driven Autonomy

Agent Reasoning with Ontologies. In Advances in Cognitive Systems (ACS-13).

Dannenhauer, D. and Muñoz-Avila, H. (2015a). Goal-driven autonomy with

semantically-annotated hierarchical cases. In Case-Based Reasoning Research and

Development, pages 88–103. Springer.

Dannenhauer, D. and Muñoz-Avila, H. (2015b). Raising Expectations in GDA Agents

Acting in Dynamic Environments. In International Joint Conference on Artificial

Intelligence (IJCAI-15).

Dannenhauer, D., Munoz-Avila, H., and Cox, M. T. (2016). Informed Expectations

to Guide GDA Agents in Partially Observable Environments. In International Joint

Conference on Artificial Intelligence (IJCAI-16).

Dannenhauer, D., Munoz-Avila, H., and Cox, M. T. (2017). Metacognitive Expecta-

tions. Under Review.

Dunlosky, J., Rawson, K. A., Marsh, E. J., and Nathan, Mitchell J.and Willingham, D.

(2013). Improving students learning with effective learning techniques: Promising

directions from cognitive and educational psychology. Psychological Science in the

Public Interest, 14(1):4–58.

172

www.manaraa.com

Erol, K., Hendler, J., and Nau, D. S. (1994). Htn planning: Complexity and expressivity.

In AAAI, volume 94, pages 1123–1128.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208.

Flavell, J. H. (1979). Metacognition and cognitive monitoring. a new area of cognitive-

development inquiry. American Psychologist, 34(10):906–911.

Flavell, J. H. and Wellman, H. M. (1977). Metamemory. In Perspectives on the Devel-

opment of Memory and Cognition, pages 3–33. Lawrence Erlbaum Associates.

Fox, M., Gerevini, A., Long, D., and Serina, I. (2006). Plan Stability: Replanning

versus Plan Repair. ICAPS.

Fritz, C. and McIlraith, S. A. (2007). Monitoring Plan Optimality During Execution. In

ICAPS, pages 144–151.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local search

and temporal action graphs in lpg. Journal of Artificial Intelligence Research, pages

239–290.

Ghallab, M., Nau, D., and Traverso, P. (2014). The actors view of automated planning

and acting: A position paper. Artificial Intelligence, 208:1–17.

Gil, Y. and Blythe, J. (2000). How Can a Structured Representation of Capabilities

Help in Planning. In Proceedings of the AAAI–Workshop on Representational Issues

for Realworld Planning Systems.

Goldman, R., Boddy, M., and Pryor, L. (1996). Planning with observations and knowl-

edge. In AAAI-97 workshop on theories of action, planning and control.

173

www.manaraa.com

Hawes, N. (2011). A survey of motivation frameworks for intelligent systems. Artificial

Intelligence, 175(5-6):1020–1036.

Hawes, N., Hanheide, M., Hargreaves, J., Page, B., Zender, H., and Jensfelt, P. (2011).

Home Alone: Autonomous Extension and Correction of Spatial Representations. In

Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages

3907–3914. IEEE.

Howard, R. A. (1960). Dynamic programming and markov processes..

Ives, Z. G., Florescu, D., Friedman, M., Levy, A., and Weld, D. S. (1999). An adaptive

query execution system for data integration. In ACM SIGMOD Record, volume 28,

pages 299–310. ACM.

Jaidee, U. and Muñoz-Avila, H. (2013). Modeling Unit Classes as Agents in Real-Time

Strategy Games. In Ninth Artificial Intelligence and Interactive Digital Entertain-

ment Conference.

Jaidee, U., Muñoz-Avila, H., and Aha, D. W. (2011). Integrated Learning for Goal-

Driven Autonomy. In Proceedings of the Twenty-Second international joint confer-

ence on Artificial Intelligence-Volume Volume Three, pages 2450–2455. AAAI Press.

Jaidee, U., Muñoz-Avila, H., and Aha, D. W. (2012). Learning and Reusing Goal-

Specific Policies for Goal-Driven Autonomy. In Case-Based Reasoning Research

and Development, pages 182–195. Springer.

Kaelbling, L., Littman, M., and Cassandra, A. (1995). Partially observable markov de-

cision processes for artificial intelligence. KI-95: Advances in Artificial Intelligence,

pages 1–17.

174

www.manaraa.com

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artificial intelligence, 101(1):99–134.

Kambhampati, S. and Hendler, J. A. (1992). A validation-structure-based theory of plan

modification and reuse. Artificial Intelligence, 55(2):193–258.

Klenk, M., Molineaux, M., and Aha, D. W. (2013). Goal-driven autonomy for re-

sponding to unexpected events in strategy simulations. Computational Intelligence,

29(2):187–206.

Knoblock, C. A. (1995). Planning, executing, sensing, and replanning for information

gathering. In In Proceedings Of The Fourteenth International Joint Conference On

Artificial Intelligence.

Knoblock, C. A. (1996). Building a planner for information gathering: A report from

the trenches. In In AIPS-96. Citeseer.

Kurup, U., Lebiere, C., Stentz, A., and Hebert, M. (2012). Using expectations to drive

cognitive behavior. Twenty-Sixth AAAI Conference on Artificial Intelligence.

Lee, P. Y. and Cox, M. T. (2002). Dimensional indexing for targeted case-base retrieval:

The smirks system. In FLAIRS Conference, pages 62–66.

Lotem, A. and Nau, D. S. (2000). New advances in graphhtn: Identifying independent

subproblems in large htn domains. In AIPS, pages 206–215.

Mei, Y., Lu, Y.-H., Hu, Y. C., and Lee, C. G. (2005). A case study of mobile robot’s

energy consumption and conservation techniques. In Advanced Robotics, 2005.

ICAR’05. Proceedings., 12th International Conference on, pages 492–497. IEEE.

175

www.manaraa.com

Michael, C. and Ashwin, R. (1999). Introspective multistrategy learning: On the con-

struction of learning strategies. Artificial Intelligence, 112:1–55.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. (1986). Explanation-based

generalization: A unifying view. Machine learning, 1(1):47–80.

Molineaux, M. and Aha, D. (2013). Learning Models for Predicting Surprising Events.

In Advances in Cognitive Systems Workshop on Goal Reasoning.

Molineaux, M. and Aha, D. W. (2014). Learning unknown event models. In Twenty-

Eighth AAAI Conference on Artificial Intelligence.

Molineaux, M., Klenk, M., and Aha, D. W. (2010). Goal-driven autonomy in a navy

strategy simulation. In Proceedings of the Twenty-Fourth AAAI Conference on Arti-

ficial Intelligence, pages 1548–1554. AAAI Press.

Molineaux, M., Kuter, U., and Klenk, M. (2012). Discoverhistory: Understanding the

past in planning and execution. In Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems-Volume 2, pages 989–996.

Muñoz, H., Paulokat, J., and Wess, S. (1995). Controlling a nonlinear hierarchical

planner using case replay. Springer.

Muñoz-Avila, H., Aha, D. W., Jaidee, U., Klenk, M., and Molineaux, M. (2010a).

Applying goal-driven autonomy to a team shooter game. In FLAIRS Conference.

Muñoz-Avila, H., Aha, D. W., Nau, D. S., Weber, R., Breslow, L., and Yamal, F. (2001).

Sin: integrating case-based reasoning with task decomposition. In Proceedings of the

17th International Joint Conference on Artificial Intelligence-Volume 2, pages 999–

1004. Morgan Kaufmann Publishers Inc.

176

www.manaraa.com

Muñoz-Avila, H., Jaidee, U., Aha, D. W., and Carter, E. (2010b). Goal-Driven Auton-

omy with Case-Based Reasoning. In Case-Based Reasoning. Research and Develop-

ment, pages 228–241. Springer.

Murdock, J. W. and Goel, A. K. (2008). Meta-case-based reasoning: self-improvement

through self-understanding. Journal of Experimental & Theoretical Artificial Intelli-

gence, 20(1):1–36.

Nau, D., Cao, Y., Lotem, A., and Muñoz-Avila, H. (1999). SHOP: Simple hierarchi-

cal ordered planner. In Proceedings of the 16th international joint conference on

Artificial intelligence-Volume 2, pages 968–973. Morgan Kaufmann Publishers Inc.

Nau, D. S. (2007). Current Trends in Automated Planning. AI magazine, 28(4):43.

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.

(2003). Shop2: An htn planning system. J. Artif. Intell. Res.(JAIR), 20:379–404.

Paisner, M., Maynord, M., Cox, M. T., and Perlis, D. (2013). Goal-driven autonomy in

dynamic environments. In Goal Reasoning: Papers from the ACS Workshop, page 79.

Paolucci, M., Shehory, O., Sycara, K., Kalp, D., and Pannu, A. (1999). A planning

component for retsina agents. In Intelligent Agents VI. Agent Theories, Architectures,

and Languages, pages 147–161. Springer.

Pettersson, O. (2005). Execution monitoring in robotics: A survey. Robotics and Au-

tonomous Systems, 53:73–88.

Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice.

177

www.manaraa.com

Reder, L. M. and Ritter, F. (1992). What determines initial feeling of knowing? famil-

iarity with question terms, not with the answer. Journal of Experimental Psychology:

Learning, memory, and cognition, 18(3):435–451.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J., Molineaux, M., Apker,

T., Wilson, M., McMahon, J., and Aha, D. W. (2014). Iterative goal refinement for

robotics. In ICAPS Workshop on Planning and Robotics.

Schank, R. and Owens, C. (1987). Understanding by explaining expectation failures. In

Reilly, R. G., editor, Communication failure in dialogue and discourse, pages 201–

202. Elsevier Science.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in com-

puters and people. Cambridge University Press.

Shivashankar, V., EDU, U., Alford, R., Kuter, U., and Nau, D. (2013). Hierarchical goal

networks and goal-driven autonomy: Going where ai planning meets goal reasoning.

In Goal Reasoning: Papers from the ACS Workshop, page 95.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical

OWL-DL reasoner. Web Semantics: science, services and agents on the World Wide

Web, 5(2):51–53.

Smith, D. E. (2004). Choosing objectives in over-subscription planning. In ICAPS,

volume 4, page 393.

Sugandh, N., Ontañón, S., and Ram, A. (2008). On-Line Case-Based Plan Adaptation

for Real-Time Strategy Games. AAAI.

178

www.manaraa.com

Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., and Scheutz, M.

(2010). Planning for human-robot teaming in open worlds. ACM Transactions on

Intelligent Systems and Technology (TIST), 1(2):14.

Van Der Krogt, R. and De Weerdt, M. (2005). Plan repair as an extension of planning.

In ICAPS, volume 5, pages 161–170.

Vattam, S., Klenk, M., Molineaux, M., and Aha, D. (2013). Breadth of approaches to

goal reasoning: A research survey.

Veloso, M., Pollack, M., and Cox, M. (1998). Rationale-based monitoring for planning

in dynamic environments. AIPS.

Wang, X. (1995). Learning by observation and practice: An incremental approach for

planning operator acquisition. In Proceedings of the 12th International Conference

on Machine Learning.

Wang, X. (1996). Planning while learning operators. In Proceedings AIPS.

Warfield, I., Hogg, C., Lee-Urban, S., and Munoz-Avila, H. (2007). Adaptation of

hierarchical task network plans. In FLAIRS Conference, pages 429–434.

Weber, B. (2012). Integrating Learning in a Multi-Scale Agent. PhD thesis, University

of California, Santa Cruz.

Weber, B. G., Mateas, M., and Jhala, A. (2010). Applying Goal-Driven Autonomy to

StarCraft. In AIIDE.

Weber, B. G., Mateas, M., and Jhala, A. (2012). Learning from demonstration for

goal-driven autonomy. In AAAI.

179

www.manaraa.com

Wilson, T. D. and Schooler, J. W. (1991). Thinking too much: Introspection can reduce

the quality of preferences and decisions. Journal of Personality and Social Psychol-

ogy, 60(2):181–192.

Yang, Q., Kangheng, W., and Yunfei, J. (2007). Learning action models from plan

examples using weighted max-sat. artificial intelligence. Artificial Intelligence,

171:107–143.

180

www.manaraa.com

Vita

Dustin Dannenhauer was born in 1989 in Chicago, IL to Judith and Roger Dannenhauer.

He received his Bachelor’s of Science in Computer Science from Indiana University

Bloomington in May of 2012. He received his Ph.D. in Computer Science from Lehigh

University in May of 2017.

Dustin has published the following works:

[AAAI-17] Cox, M. T., Dannenhauer, D., and Kondrakunta, S. ”Goal Operations for

Cognitive Systems.” To appear in: Proceedings of the 31st AAAI Conference on

Artificial Intelligence. Palo Alto, CA: AAAI Press. In press.

[IJCAI-16] Dannenhauer, D., Munoz-Avila, H., and Cox, M. T. ”Informed Expecta-

tions to Guide GDA Agents in Partially Observable Environments.” Proceedings

of the 25th International Joint Conference on Artificial Intelligence (IJCAI). Palo

Alto, CA: AAAI Press. 2016. [PDF]

[IJCAI-16 Goal Reasoning Workshop] Cox, M. T., and Dannenhauer, D. Goal trans-

formation and goal reasoning. M.Roberts (Ed.), Working Notes of the 4th Work-

shop on Goal Reasoning. New York, IJCAI. 2016. http://makro.ink/ijcai2016grw/

[IJCAI-16 Doctoral Consortium] Dannenhauer, D. ”Self Monitoring Goal Driven

181

www.manaraa.com

Autonomy Agents.” Doctoral Consortium, International Joint Conference on Ar-

tificial Intelligence (IJCAI). AAAI Press, 2016.

[AAAI-16] Cox, M. T., Alavi, Z., Dannenhauer, D., Eyorokon, V., and Munoz-Avila,

H. ”MIDCA: A Metacognitive, Integrated Dual-Cycle Architecture for Self-regulated

Autonomy.” Proceedings of the 30th AAAI Conference on Artificial Intelligence

(AAAI). Palo Alto, CA: AAAI Press. 2016. [PDF]

[IJCAI-15] Dannenhauer, D., and Munoz-Avila, H. ”Raising expectations in GDA

agents acting in dynamic environments.” Proceedings of the 24th International

Conference on Artificial Intelligence (IJCAI). AAAI Press, 2015. [PDF]

[ICCBR-15] Dannenhauer, D., and Munoz-Avila, H. ”Goal-Driven Autonomy with

Semantically-annotated Hierarchical Cases.” International Conference on Case-

Based Reasoning (ICCBR). Springer International Publishing, 2015. 88-103.

[PDF]

[ACS-15 Goal Reasoning Workshop] Munoz-Avila, H., Dannenhauer, D., and Cox,

M. T. ”Towards cognition-level goal reasoning for playing real-time strategy games.”

Goal Reasoning: Papers from the ACS Workshop. 2015. [PDF]

[BICA-14] Dannenhauer, D., Cox, M. T., Gupta, S., Paisner, M. and Perlis, D. ”To-

ward meta-level control of autonomous agents.” In Proceedings of the 2014 An-

nual International Conference on Biologically Inspired Cognitive Architectures:

Fifth annual meeting of the BICA Society (BICA). Elsevier/Procedia Computer

Science, 41, 226-232. 2014. [PDF]

[AIIDE-13 Doctoral Consortium] Dannenhauer, D. ”Ontological Knowledge for Goal-

182

www.manaraa.com

Driven Autonomy Agents in Starcraft.” Doctoral Consortium, 9th Artificial Intel-

ligence and Interactive Digital Entertainment Conference (AIIDE). 2013.

[ACS-13] Dannenhauer, D. and Munoz-Avila, H. ”LUIGi: A Goal-Driven Autonomy

Agent Reasoning with Ontologies.” Advances in Cognitive Systems Conference

(ACS). 2013. [PDF]

[ICCBR-13] Dannenhauer, D., Munoz-Avila, H. ”Case-based Goal Selection Inspired

by IBM’s Watson.” International Conference on Case-Based Reasoning (ICCBR).

Springer. 29-43. 2013. [PDF]

Dustin has served as a teaching assistant during the Fall 2014 semester at Lehigh

University. During his time at Indiana University, he acted as an Undergraduate Instruc-

tor for each semester from the Fall of 2009 until the Spring of 2012.

183

